This Research acknowledges ND EPSCoR (UND0014140), the Office of RD&C (21418-4010-02294), and the UND Graduate School for the grant support.
OUTLINE OF THE PRESENTATION

- Introduction: Need for Situational Awareness of Smart-grid
- Proposed Situational Awareness Framework
- Development of User Interface for openPDC
- Data Visualization
- Data Clustering
 - DBSCAN Clustering
 - k-means Clustering
 - Multi-Tier k-means Clustering
- Results and Discussions
- Conclusion
Need for Situational Awareness of Smart Grid

<table>
<thead>
<tr>
<th>Blackout Events</th>
<th>Affected Areas</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 22, 2013 – Major ice-storm caused power failure.</td>
<td>Ontario to the maritime province in the far east and Michigan People affected – 1.1 million.</td>
<td>Ice storm</td>
</tr>
<tr>
<td>March 31, 2015 – Black-out, caused by technical failure, affected about 90% of Turkey.</td>
<td>90% of Turkey. People affected – 70 million.</td>
<td>Probable cyber attack.</td>
</tr>
</tbody>
</table>
INTEGRATED SOFTWARE SUITE (ISS)

Figure 1: Integrated Software Suite

Data Mining
* DBSCAN
* K-means
* 5-Tier K-means
Other algorithms

Data Visualization
* Unit Circle
* Geo-Spatial Mapping
* Box Whiskers

Intrusion Detection & Mitigation – Physical & Cyber
(MU 8000 Security Analyzer)

Alert Services
* E-mail
* Short Message

Forecasting
* Linear Regression
* Exponential Smoothing
* Holts Model
* ARIMA

VPN Server

Data Aggregator ex: PDC(openPDC)

Integrated Software Suite (MATLAB/Visual Studio/ C#)

Output Layer

Ordered SQL queries

Topology & State Estimator

Master Database (Oracle)
OpenPDC functions by receiving data broadcasted by a PMU and concentrating it, enabling archiving, rebroadcasting, and analysis of the phasor data. It provides around 30 samples per second.

Functionalities:
- E-mail Alarm
- Short Message Service alarm
- Location based monitoring

Methodologies
- C# used for all coding
- Visual Studio 2012 IDE used for development
- External libraries utilized:
 - Grid Solutions Framework
 - Google Static Maps API
 - .NET Framework 4.5
Subject: An alarm has triggered.
Time: 7/17/2014 3:33:58 PM
Name: TESTALARM
Threshold: 299300
Operation: Greater than or equal to Sever

An alarm has triggered.

To: Gellerman, Nickole
Time: 7/17/2014 5:37:04 AM
Name: TESTALARM
Threshold: 299300
Operation: Greater than or equal to Sever
Severity: Information
Description: Shelby Bus 1 + Voltage Magnitude

Data to monitor selected via dropdown box
Color scale a hue between red and blue, adjustable by user
Hovering over a data circle causes a pop-up with PMU information to appear

Figure 3: Short Message Service Alarm
Figure 4: E-mail Alarm
Figure 5: Location Based Monitoring System
DBSCAN CLUSTERING SCHEME

- DBSCAN is a density-based clustering algorithm that divides large regions with sufficiently high density into multiple clusters.
- DBSCAN considers two parameters as input excluding the data. They are ε (Eps) and $MinPts$. $Minpts$ are the minimum number of points that are required to form a core, and eps is the distance threshold from center of the cluster to its circumference of the cluster.

![Figure 6: DBSCAN Cluster Formation](image-url)
The k-means technique is a well-known and popular algorithm which was first proposed by Lloyd. Here, each cluster is represented by an adaptively changing centroid (also called a cluster center), starting from some initial values.

Figure 7: k-means Clustering
This paper presents a different version of k-means which we refer as multi-tier k-means clustering tailored for power system data sets.

The proposed approach dynamically forms clusters from 1 to 5 clusters depending on the data thresholds and fault type. They are: High Noise, High Border, Good Data, Low Border, and Low Noise points.

Capable of clearly distinguish the good, bad and the noisy data with the threshold inputs from the operator.

Figure 8: Multi-tier k-means Cluster Formation
Figure 9: Smart Grid Data Management Framework (SGDMF)
RESULTS AND DISCUSSIONS

- Data Visualization
 - Box Plot
 - Circle Representation

- Data Clustering
 - DBSCAN Clustering
 - k-means Clustering
 - Multi-Tier k-means Clustering
As phase angle varies between $-\pi$ to $+\pi$ (0 to 360 degrees) and the magnitudes are above 0 for the electric signals, unit circle representation is ideal smart-grid data.

The "Box Whiskers" is a statistical tool that allows observing a time-series data with minimum and maximum values in the series, standard deviations, mean and median values.
TEST SCENARIO: STEADY-STATE CONDITION

Figure 12: Clustering Schemes Applied on openPDC data under steady state condition
(a) DBSCAN, (b) k-means, (c) Multi-Tier
Figure 13: Clustering Schemes Applied on openPDC data under Heavy Load Conditions
(a) DBSCAN, (b) k-means, (c) Multi-Tier
TEST SCENARIO: LIGHT LOAD (LOW DEMAND) CONDITION

Figure 14: Clustering Schemes Applied on openPDC data under Light Load Conditions
(a) DBSCAN, (b) k-means, (c) Multi-Tier
Figure 15: Clustering Schemes Applied on openPDC data Under SLG Fault Conditions
(a) DBSCAN, (b) k-means, (c) Multi-Tier
DISTIBUTION OF DATA POINTS

<table>
<thead>
<tr>
<th>Load Condition</th>
<th>Noise Points (Red)</th>
<th>Border Points (Yellow)</th>
<th>Core Points (Green)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.5</td>
<td>6.3</td>
<td>93.2</td>
</tr>
<tr>
<td>Heavy</td>
<td>0.078</td>
<td>8.96</td>
<td>90.5</td>
</tr>
<tr>
<td>Light</td>
<td>0.8</td>
<td>56.3</td>
<td>42.8</td>
</tr>
<tr>
<td>Fault</td>
<td>7.73</td>
<td>14.4</td>
<td>77.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Condition</th>
<th>Cluster 1 (Blue)</th>
<th>Cluster 2 (Cyan)</th>
<th>Cluster 3 (Green)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>27.1</td>
<td>36</td>
<td>36.7</td>
</tr>
<tr>
<td>Heavy</td>
<td>25.3</td>
<td>40.1</td>
<td>34.4</td>
</tr>
<tr>
<td>Light</td>
<td>32.7</td>
<td>27.7</td>
<td>39.4</td>
</tr>
<tr>
<td>Fault</td>
<td>94.6</td>
<td>4.29</td>
<td>1.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Condition</th>
<th>Low Noise (Blue)</th>
<th>Low Border (Cyan)</th>
<th>Good Points (Green)</th>
<th>High Border (Yellow)</th>
<th>High Noise (Red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0</td>
<td>10.53</td>
<td>89.47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heavy</td>
<td>24.7</td>
<td>5.2</td>
<td>70.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Light</td>
<td>0</td>
<td>3.3</td>
<td>79.76</td>
<td>16.94</td>
<td>0</td>
</tr>
<tr>
<td>Fault</td>
<td>5.32</td>
<td>10.4</td>
<td>84.2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Steady-state condition: **Multi-tier** k-means performs best.
- Heavy-load condition: **DBSCAN** performs best.
- Light-load condition: **DBSCAN** performs best.
- Fault condition: **Multi-tier** performs the best.
CONCLUSION

- An Integrated Software Suite (ISS) has been developed to apply decision-making data-mining algorithms on time-synchronized synchrophasor data.

- A novel, Multi-Tier variation of the k-means algorithm is presented, and its performance metrics are studied against common clustering techniques to classify and detect bad data, event detection, and alarm service applications.

- A comparative analysis has been carried out between the three data clustering algorithms, DBSCAN, k-means and the Multi-Tier k-means.

- It is believed that such a framework will enable the grid’s system operators to utilize novel algorithms in order to enhance situational awareness about the grid. The framework is scalable and suitable for streaming time-series data sets.
FUTURE WORK

- Study application of forecasting algorithms like:
 - Time Series Data Analysis
 - Linear Regression
 - Exponential Smoothing
 - Holt’s Model
- Topology based State Estimator
- Intrusion Detection and Mitigation Systems
REFERENCES:

[19]
THANK YOU…

Questions???
K MEANS CLUSTERING SCHEME

Iteration – 1
Centroids chosen in random:
\(C_1, C_2, C_3 \)

Calculate new centroids based on data points in each cluster:
\(C_1' \neq C_1, C_2' \neq C_2, \\
C_3' = C_3 \)

Distance Metric used: Euclidean
\[
D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}
\]

Iteration – 2
Centroids used from previous:
\(C_1', C_2', C_3' \)

Calculate new centroids based on data points in each cluster:
\(C_1'' = C_1', C_2'' \neq C_2', \\
C_3'' = C_3' \)

Iteration – 3
Centroids used from previous:
\(C_1'', C_2'', C_3'' \)

Calculate new centroids based on data points in each cluster:
\(C_1''' = C_1'', C_2''' = C_2'', \\
C_3''' = C_3'' \)

Figure: k-means Cluster formation
Inputs for the Algorithm

\[X = \text{Dataset} \]
\[Eps = \text{Min. distance between two points} \]
\[D = \text{Min. number of points required to make core} \]

Distance Metric used: Euclidean

\[D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \]
<table>
<thead>
<tr>
<th>Stage - 1</th>
<th>Type - I: Normal k-means algorithm is applied with 3 clusters and pre-defined values of centroids C_1, C_2, C_3.</th>
<th>Running iterations until the dataset is clustered into three groups or less.</th>
<th>Based on the transmission line data, the three clusters are then modified to generate potentially two more clusters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage - 2</td>
<td>Type - I: Thresholds are setup to divide the dataset into five different cluster regions.</td>
<td>The regions are given a separate color to indicate the level of contingency: high noise (red), high border (yellow), core (green), low border (cyan), and low noise (blue).</td>
<td></td>
</tr>
<tr>
<td>Stage - 1</td>
<td>Type - II: Normal k-means algorithm is applied with 3 clusters and pre-defined values of centroids C_1, C_2, C_3.</td>
<td>Running iterations until the dataset is clustered into three groups or less.</td>
<td>Based on the transmission line data, the three clusters are then modified to generate potentially two more clusters.</td>
</tr>
<tr>
<td>Stage - 2</td>
<td>Type - II: Thresholds are setup to divide the dataset into five different cluster regions.</td>
<td>The regions are given a separate color to indicate the level of contingency: high noise (red), high border (yellow), core (green), low border (cyan), and low noise (blue).</td>
<td></td>
</tr>
</tbody>
</table>

Inputs for the Algorithm
- X = Dataset
- V = Expected voltage of Transmission line
- S = Allowable range for the line voltage to fluctuate

Distance Metric used: Euclidean

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$