[bookmark: _GoBack]
Training Material and Documentation

This documentation was prepared by:
Grid Protection Alliance. Inc.
1206 Broad Street
Chattanooga, TN 37402
https://gridprotectionalliance.org

Table of Contents
GEP Filter Expressions	7
Filtering Syntax	7
Available Options and Clauses	7
Available Table Definitions	8
STTP Filter Expressions	20
Filtering Syntax	20
Direct Signal Identification	21
Filter Expression Operators	22
Case Sensitive String Comparisons	23
Filter Expression Functions	25
Signal Selection Meta-data Table Definitions	29
ActiveMeasurements	29
Primary Meta-data Table Definitions	31
DeviceDetail	31
MeasurementDetail	32
PhasorDetail	33
Common Time-Series Statistics	35
STTP Data Sets	45
GSF Grafana Functions	46
Series Functions	46
Execution Modes	47
Group Operations	47
Available Functions	48
Grafana Data Source Plug-in for openHistorian	63
Usage	63
Element List Query Builder	63
Filter Expression Query Builder	64
Text Editor Query Builder	64
Series Functions	65
Alarm Annotations	66
Configuration	66
openHistorian 2.0 Configuration	66
openHistorian 1.0 Configuration	67
Excluded Data Flags	68
Installation	69
PI Web API Datasource for Grafana	70
Usage	70
Template Variables	70
Event Frames and Annotations	71
Installation	72
Trademarks	72
Gateway Exchange Protocol Overview	73
The GEP Protocol	74
Security	75
GEP APIs	76
GEP Subscriber Commands	77
GEP Publisher Responses	78
Creating an Internal GEP Data Transfer between Two Systems	79
Creating a TLS GEP Data Transfer between Two Systems	85
How to Create a Custom Adapter	97
Start a new project	97
Add references	98
Extending one of the base classes	98
Implementation	99
Using your custom adapter	106
Other adapter types	107
Examples	108
ProcessQueue example	108
QueueMeasurementsForProcessing example	109
Dynamic Calculator	111
Example 1 – Multiply a Voltage by √3	112
Example 2 – Addition of Two Phasor Values	118
Available Functions	126
Connection Strings	127
ActionAdapterBase	127
AdapterBase	130
AdoInputAdapter	130
AdoOutputAdapter	131
BpaPdcStream.Concentrator	131
CalculatedMeasurementBase	131
CsvAdapters.CsvInputAdapter	132
CsvAdapters.CsvOutputAdapter	132
DataQualityMonitoring.FlatlineTest	132
DataQualityMonitoring.RangeTest	132
DataQualityMonitoring.TimestampTest	133
FacileActionAdapterBase	133
HistorianAdapters.InputAdapter	133
HistorianAdapters.LocalOutputAdapter	134
HistorianAdapters.RemoteOutputAdapter	134
ICCPExport.FileExporter	135
IEEEC37_118.Concentrator	135
InputAdapterBase	135
MySqlAdapters.MySqlInputAdapter	135
MySqlAdapters.MySqlOutputAdapter	136
OutputAdapterBase	137
PhasorDataConcentratorBase	137
PhasorMeasurementMapper	139
PowerCalculations.AverageFrequency	142
PowerCalculations.EventDetection.FrequencyExcursion	142
PowerCalculations.EventDetection.LossOfField	143
PowerCalculations.PowerStability	143
PowerCalculations.ReferenceAngle	144
PowerCalculations.ReferenceMagnitude	144
Syntax for inputMeasurementKeys and outputMeasurements	145
Typical Time Zones	146
Command Line Functions for Improved Diagnostics	149
Command: List /i	150
Command: List /a	150
Command: List /o	151
Command: ListCommands	151
Application of Console Commands:	152
Conclusions:	154
Signal Reference Notes	155
Configuring Multiple openHistorian Archive Locations	157
Setting up Data Gap Recovery with openHistorian	160
Copy/Install openHistorian 2.0 libraries in GSF Target App	160
Enabling Buffer Archive	160
Configure SIEGate PPAREADER	162
Setting Measurements to be Archived	164
Enabling Data Recovery on openHistorian	165
Alarming Configuration	166
The Alarm Configuration Screen	166
Tag Name	167
Advanced Alarming	169
Alarming the openPDC Performance Historian	170
Example 1 –PMU Connection Alarm	170
Example 2 –Low Frequency Alarm	172
Example 3 – Alarming for Latched Phasor Magnitude	173
Appendix: Web Links	174
Appendix: Phasor Protocol Comparisons	178
ABSTRACT	178
INTRODUCTION	179
A Brief History of Synchrophasor Protocols	179
COMMUNICATIONS BACKGROUND	182
Internet Protocol	182
Serial Communications	185
PROTOCOL DATA CHARACTERISTICS	187
Types of Measured Quantities	187
Data Publication Rate	188
Measurement Groupings	188
Measurement Serialization	189
DATA FRAMING	190
Checksums	190
Synchronization Bytes	191
Frame Concentration	191
LARGE FRAME IMPACT ON IP	193
Large Frame Impacts using TCP	193
Large Frame Impacts on UDP	194
IEEE C37.118.2-2011 PROTOCOL OVERVIEW	195
Protocol Summary	195
Protocol Structure	195
Protocol Timestamp Format	198
Protocol Security	199
Bandwidth Utilization	199
IEC TR 61850905 PROTOCOL OVERVIEW	200
Protocol Summary	200
Protocol Structure	201
Protocol Timestamp Format	206
Protocol Security	206
Bandwidth Utilization	207
STTP PROTOCOL OVERVIEW	207
Protocol Summary	208
Protocol Structure	209
Protocol Timestamp Format	214
Protocol Security	214
Bandwidth Utilization	215
STTP Data Compression	216
PLANNED TESTING	219
COMPARISON CONCLUSIONS	221
Structure	221
Efficiency	222
Susceptibility to Data Loss	223
Scalability	225
Security	226
Non-Synchrophasor Data Transport	227
Other Operating Functionality	227
Protocol Comparison Summary	228
REFERENCES	229

[bookmark: _Toc24551415]GEP Filter Expressions
Filter expressions can be used to filter inputs and outputs for streams, subscribers, and adapters. This syntax is similar to a SQL WHERE clause but does not implement the full SQL language. See DataTable.Select() for more information.

[bookmark: _Toc24551416]Filtering Syntax

FILTER <TableName> [TOP n] WHERE <Expression> [ORDER BY <SortField>]

[bookmark: _Toc24551417]Available Options and Clauses

	Keyword
	Example
	Description
	Required?

	FILTER
	See Examples
	Starts the filter expression
	Yes

	TOP n
	TOP 100
	Selects only the first number of items
	No

	WHERE
<Expression>
	WHERE
SignalType='FREQ'
	Uses DataTable.Select(string)
	Yes

	ORDER BY
<ColumnName>
	ORDER BY
SignalType
	Uses DataTable.Select(string, string)
	
No

Examples
An example input filter to only pass measurements with the company of GPA and type of
Frequency(FREQ) .

inputMeasurementKeys = {
FILTER ActiveMeasurements WHERE Company='GPA' AND SignalType='FREQ' ORDER BY ID
};

An example input filter to only pass first 20 Statistics(STAT) measurments.
[image: GPA_logo_100.png][image: XM S.A. E.S.P.]

	Page 1 | 1

inputMeasurementKeys = {
FILTER TOP 20 ActiveMeasurements WHERE SignalType = 'STAT'
};

An example output filter to only send Current Angle and Voltage Angle for the Positive Sequence(+) measurments.

outputMeasurements = {
FILTER ActiveMeasurements WHERE SignalType IN ('IPHA','VPHA') AND Phase='+' ORDER BY PhasorID
};

See more examples of allowed DataTable.Select() syntax.

[bookmark: _Toc24551418]Available Table Definitions
Available table defintions are defined in the ConfigurationEntity table of the host Time-Series Library application configuration database.
For selection of input and output measurements for adapters, ActiveMeasurements is the most common source. Other commonly defined tables are listed here for reference as well.
ActiveMeasurements ActionAdapters Alarms ConfigurationDataSet ConfigurationEntity InputAdapters InputStreamDevices
MeasurementGroupMeasurements MeasurementGroups
NodeInfo OutputAdapters
OutputStreamDevicePhasors OutputStreamDeviceAnalogs

OutputStreamDeviceDigitals OutputStreamDevices OutputStreamMeasurements Statistics SubscriberMeasurementGroups SubscriberMeasurements Subscribers
ActiveMeasurements

	ColumnName
	DataType

	SourceNodeID
	Guid

	ID
	string

	SignalID
	Guid

	PointTag
	string

	AlternateTag
	string

	SignalReference
	string

	Internal
	int

	Subscribed
	int

	Device
	string

	DeviceID
	int

	FramesPerSecond
	int

	Protocol
	string

	ProtocolType
	string

	SignalType
	string

	EngineeringUnits
	string

	PhasorID
	int

	ColumnName
	DataType

	PhasorType
	string

	Phase
	string

	Adder
	double

	Multiplier
	double

	Company
	string

	Longitude
	Decimal

	Latitude
	Decimal

	Description
	string

	UpdatedOn
	DateTime

ActionAdapters

	ColumnName
	DataType

	ID
	int

	AdapterName
	string

	AssemblyName
	string

	TypeName
	string

	Connectionstring
	string

Alarms

	ColumnName
	DataType

	ID
	int

	TagName
	string

	SignalID
	Guid

	AssociatedMeasurementID
	Guid

	ColumnName
	DataType

	Description
	string

	Severity
	int

	Operation
	int

	SetPoint
	double

	Tolerance
	double

	Delay
	double

	Hysteresis
	double

	LoadOrder
	int

	Enabled
	bool

	CreatedOn
	DateTime

	CreatedBy
	string

	UpdatedOn
	DateTime

	UpdatedBy
	string

Alarm Severity Values

	Value
	Acronym
	Description

	0
	None
	Alarm is of no importance

	50
	Info
	Alarm is informative, but not dangerous

	150
	Low
	Alarm is not very important

	300
	MedLow
	Alarm is somewhat important

	500
	Med
	Alarm is moderately important

	700
	MedHigh
	Alarm is important

	850
	High
	Alarm is very important

	Value
	Acronym
	Description

	900
	Range
	Alarm for a value that is unreasonable

	950
	Critical
	Alarm signifies a dangerous situation

	980
	FlatLine
	Alarm value is latched

	1000
	Error
	Alarm reports bad data

ConfigurationDataSet

	ColumnName
	DataType

	Version
	string

ConfigurationEntity

	ColumnName
	DataType

	SourceName
	string

	RuntimeName
	string

	Description
	string

	LoadOrder
	int

	Enabled
	bool

InputAdapters

	ColumnName
	DataType

	ID
	int

	AdapterName
	string

	AssemblyName
	string

	TypeName
	string

	Connectionstring
	string

InputStreamDevices

	ColumnName
	DataType

	ParentID
	int

	ID
	int

	Acronym
	string

	Name
	string

	AccessID
	int

MeasurementGroupMeasurements

	ColumnName
	DataType

	MeasurementGroupID
	int

	SignalID
	Guid

	CreatedOn
	DateTime

	CreatedBy
	string

	UpdatedOn
	DateTime

	UpdatedBy
	string

MeasurementGroups

	ColumnName
	DataType

	ID
	int

	Name
	string

	Description
	string

	FilterExpression
	string

	CreatedOn
	DateTime

	ColumnName
	DataType

	CreatedBy
	string

	UpdatedOn
	DateTime

	UpdatedBy
	string

NodeInfo

	ColumnName
	DataType

	Name
	string

	CompanyName
	string

	Longitude
	Decimal

	Latitude
	Decimal

	Description
	string

	ImagePath
	string

	Settings
	string

	MenuType
	string

	MenuData
	string

	Master
	bool

	Enabled
	bool

OutputAdapters

	ColumnName
	DataType

	ID
	int

	AdapterName
	string

	AssemblyName
	string

	TypeName
	string

	ColumnName
	DataType

	Connectionstring
	string

OutputStreamDevicePhasors

	ColumnName
	DataType

	OutputStreamDeviceID
	int

	ID
	int

	Label
	string

	Type
	string

	Phase
	string

	ScalingValue
	int

	LoadOrder
	int

	CreatedOn
	DateTime

	CreatedBy
	string

	UpdatedOn
	DateTime

	UpdatedBy
	string

OutputStreamDeviceAnalogs

	ColumnName
	DataType

	OutputStreamDeviceID
	int

	ID
	int

	Label
	string

	Type
	int

	ScalingValue
	int

	LoadOrder
	int

	ColumnName
	DataType

	CreatedOn
	DateTime

	CreatedBy
	string

	UpdatedOn
	DateTime

	UpdatedBy
	string

OutputStreamDeviceDigitals

	ColumnName
	DataType

	OutputStreamDeviceID
	int

	ID
	int

	Label
	string

	MaskValue
	int

	LoadOrder
	int

	CreatedOn
	DateTime

	CreatedBy
	string

	UpdatedOn
	DateTime

	UpdatedBy
	string

OutputStreamDevices

	ColumnName
	DataType

	ParentID
	int

	ID
	int

	IDCode
	int

	Acronym
	string

	BpaAcronym
	string

	ColumnName
	DataType

	Name
	string

	PhasorDataFormat
	string

	FrequencyDataFormat
	string

	AnalogDataFormat
	string

	CoordinateFormat
	string

	LoadOrder
	int

OutputStreamMeasurements

	ColumnName
	DataType

	AdapterID
	int

	Historian
	string

	PointID
	int

	SignalReference
	string

Statistics

	ColumnName
	DataType

	ID
	int

	Source
	string

	SignalIndex
	int

	Name
	string

	Description
	string

	AssemblyName
	string

	TypeName
	string

	MethodName
	string

	ColumnName
	DataType

	Arguments
	string

	IsConnectedState
	bool

	DataType
	string

	DisplayFormat
	string

	Enabled
	bool

SubscriberMeasurementGroups

	ColumnName
	DataType

	SubscriberID
	Guid

	MeasurementGroupID
	int

	Allowed
	bool

	CreatedOn
	DateTime

	CreatedBy
	string

	UpdatedOn
	DateTime

	UpdatedBy
	string

SubscriberMeasurements

	ColumnName
	DataType

	SubscriberID
	Guid

	SignalID
	Guid

	Allowed
	bool

	CreatedOn
	DateTime

	CreatedBy
	string

	UpdatedOn
	DateTime

	ColumnName
	DataType

	UpdatedBy
	string

Subscribers

	ColumnName
	DataType

	ID
	Guid

	Acronym
	string

	Name
	string

	SharedSecret
	string

	AuthKey
	string

	ValidIPAddresses
	string

	RemoteCertificateFile
	string

	ValidPolicyErrors
	string

	ValidChainFlags
	string

	AccessControlFilter
	string

	Enabled
	bool

	CreatedOn
	DateTime

	CreatedBy
	string

	UpdatedOn
	DateTime

	UpdatedBy
	string

[bookmark: _Toc24551419]STTP Filter Expressions
Filter expressions in STTP are used to select desired signals for subscription or to reduce available meta-data down to a desired subset. Filtering syntax is similar to Structured Query Language (SQL), but does not implement the full SQL language.
Filter expressions operate against in-memory data set, not a backend database. The filtering syntax used in conjunction with a data set is designed for read-only operations and exposes no update functionality. Because of this, filter operations are not subject to SQL injection attacks or other security concerns typically associated with SQL implementations.
STTP data publishers need to define a data set consisting of a collection of data tables representing the primary meta-data from locally defined configurations that contain information about the time-series style data to be published. At a minimum this meta-data should define a Guid based identifier for each measurement to be published as well as an associated source, i.e., a device, that produces the measurement.
ℹ The STTP data publisher API defines functions to help create needed meta-data, see samples and specific example

[bookmark: _Toc24551420]Filtering Syntax

FILTER <TableName> [TOP n] WHERE <Expression> [ORDER BY <SortField> [ASC|DESC]]

Filter expressions in STTP are parsed using ANTLR. For complete syntax description, see full ANTLR grammar: FilterExpressionSyntax.g4

Available Options and Clauses

	Keyword
	Example
	Description
	Required?

	FILTER
	See examples below
	Keyword that signifies a filter
expression follows*
	Yes

	TOP n
	TOP 100
	Selects only the first n number of items
	No

	Keyword
	Example
	Description
	Required?

	WHERE
<Expression>
	WHERE
SignalType='FREQ'
	Criteria based expression, in SQL syntax, used to filter rows
	Yes

	ORDER BY
<ColumnName>
	ORDER BY
SignalType
	Expression specifying column names and sort directions
	No

ℹ The keyword FILTER is used instead of the standard SQL SELECT keyword to reinforce the notion that the expression that follows is special purposed and not standard SQL.

[bookmark: _Toc24551421]Direct Signal Identification
Filtering syntax also supports the direct specification of desired signals as semi-colon separated measurement references in a variety of forms, e.g., measurement key identifiers: PPA:4; PPA:2 - formatted as {instance}:{id} , unique Guid-based signal identifiers: 538A47B0-F10B-4143-9A0A-0DBC4FFEF1E8; '06d039f6-e5e9-4e37-85fc-52a125c67a06';
{E4BBFE6A-35BD-4E5B-92C9-11FF913E7877} optionally surrounded by single quotes or braces, or point tag name identifiers: "GPA_TESTDEVICE:FREQ"; "GPA_TESTDEVICE:FLAG" where each point tag name is in double quotes.

Examples
Example filter expression to select measurements with the company of GPA and type of Frequency (FREQ) or Voltage Magnitude (VPHM) :

FILTER ActiveMeasurements WHERE Company='GPA' AND SignalType IN ('FREQ', 'VPHM') ORDER BY Device DESC

Example filter expression to select first 20 measurements of type Statistic (STAT) :

FILTER TOP 20 ActiveMeasurements WHERE SignalType = 'STAT'

Example filter to only select Current Angle (IPHA) and Voltage Angle (VPHA) for Positive Sequence (+) measurements.

FILTER ActiveMeasurements WHERE SignalType LILE '%PHA' AND Phase='+' ORDER BY PhasorID

Example filter combining both filter expressions and directly specified tags:

PPA:15; STAT:20; PPA:8; {eecbda2f-fe76-4504-b031-7f5518c7046c};
FILTER ActiveMeasurements WHERE SignalType IN ('IPHA', 'VPHA'); 9d0423c0-2349-4a38- 85d5-b6e81735eb48;
FILTER TOP 3 ActiveMeasurements WHERE SignalType = 'FREQ' ORDER BY Device; "GPA_TESTDEVICE:FREQ"

[bookmark: _Toc24551422]Filter Expression Operators
Any operators that consist of letters, e.g., OR , are not case sensitive, so OR , or and Or are all equivalent.

Unary Operators

	Type
	Symbol

	Negative
	-

	Positive
	+

	Not
	NOT or ! or ~

Comparison Operators

	Type
	Symbol

	Less Than
	<

	Less Than or Equal
	<=

	Greater Than
	>

	Greater Than or Equal
	>=

	Equal
	= or == or ===

	Not Equal
	!= or <> or !==

Logical Operators

	Type
	Symbol

	And
	AND or &&

	Or
	OR or ||

Bitwise Operators

	Type
	Symbol

	Bit Shift Left
	<<

	Bit Shift Right
	>>

	Bitwise And
	&

	Bitwise Or
	|

	Exclusive Or
	XOR or ^

Math Operators

	Type
	Symbol

	Multiply
	*

	Divide
	/

	Add
	+

	Subtract
	-

	Modulus
	%

[bookmark: _Toc24551423]Case Sensitive String Comparisons
Unless otherwise specified, comparison of string values in filter expressions is not case sensitive. To specify a case sensitive comparison, use one of the following expression options:

Case Sensitive LIKE Expression

FILTER <TableName> WHERE <ColumnName> [NOT] LIKE [===|BINARY] 'expression'

Example:

FILTER ActiveMeasurements WHERE Device LIKE BINARY 'SHELBY%'

Case Sensitive IN Expression

FILTER <TableName> WHERE expression [NOT] <ColumnName> IN [===|BINARY] (expression1,
..., expression_n)

Example:

FILTER ActiveMeasurements WHERE NOT SignalType IN ===('IPHM', 'VPHM')

Case Sensitive ORDER BY Expression

FILTER <TableName> WHERE expression ORDER BY [===|BINARY] <ColumnName> [ASC|DESC]

Example:

FILTER TOP 5 ActiveMeasurements ORDER BY Device, === PointTag DESC

Case Sensitive Comparison Operators
When expressions are strings, or evaluated as strings, the following operators perform a case sensitive compare:

expression1 === expression2	// Case sensitive equals comparison expression1 !== expression2	// Case sensitive not equals comparison

Example:

FILTER ActiveMeasurements WHERE Device === 'SHELBY'

[bookmark: _Toc24551424]Filter Expression Functions
Function names are not case sensitive, so ABS , abs and Abs are all equivalent.

	Function
	Arguments
	Description

	
ABS
	
expression
	Returns the absolute value of the specified numeric
expression .

	
CEILING
	
expression
	Returns the smallest integer that is greater than, or equal to, the specified numeric expression .

	

COALESCE
	expression1,
...,
expression_n
	
Returns the first non-null value in expression list.

	

CONVERT
	

expression, type
	Converts expression to the specified type . type is one of boolean (or bool), int32 , uint , int64 (or int), decimal , single (or float), double , string , guid , or datetime . type is not case sensitive.

	

CONTAINS
	
source, test,
[ignoreCase]
	Returns flag that determines if source string contains test string. ignoreCase is a optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	

DATEADD
	

source, value,
interval
	Adds value at specified interval to source date and then returns the date. interval is one of Year , Month , DayOfYear , Day , Week , WeekDay , Hour , Minute ,
Second , or Millisecond . interval is not case sensitive.

	

DATEDIFF
	

left, right, interval
	Returns the difference between left and right value at specified interval . interval is one of Year ,
Month , DayOfYear , Day , Week , WeekDay , Hour ,
Minute , Second , or Millisecond . interval is not case sensitive.

	

DATEPART
	

source, interval
	Returns specified interval of source . interval is one of Year , Month , DayOfYear , Day , Week , WeekDay ,
Hour , Minute , Second , or Millisecond . interval is not case sensitive.

	Function
	Arguments
	Description

	

ENDSWITHS
	
source, test,
[ignoreCase]
	Returns flag that determines if source string ends with test string. ignoreCase is a optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	
FLOOR
	
expression
	Returns the largest integer value that is smaller than, or equal to, the specified numeric expression .

	

IIF
	expression, leftValue, rightValue
	Returns leftValue if result of expression is true , else returns rightValue .

	

INDEXOF
	
source, test,
[ignoreCase]
	Returns zero-based index of first occurrence of test in source , or -1 if not found. ignoreCase is a optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	
ISDATE
	
expression
	Returns flag that determines if expression is a
dateTime or can be parsed as one.

	
ISINTEGER
	
expression
	Returns flag that determines if expression is an integer value or can be parsed as one.

	
ISGUID
	
expression
	Returns flag that determines if expression is a Guid value or can be parsed as one.

	ISNULL
	expression
	Returns flag that determines if expression is null .

	
ISNUMERIC
	
expression
	Returns flag that determines if expression is a numeric value or can be parsed as one.

	

LASTINDEXOF
	
source, test,
[ignoreCase]
	Returns zero-based index of last occurrence of test in source , or -1 if not found. ignoreCase is a optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	LEN
	expression
	Returns length of expression interpreted as a string.

	
LOWER
	
expression
	Returns lower-case representation of expression
interpreted as a string.

	Function
	Arguments
	Description

	

MAXOF
	expression1,
...,
expression_n
	
Returns value in expression list with maximum value.

	

MINOF
	expression1,
...,
expression_n
	
Returns value in expression list with minimum value.

	
NOW
	
	Returns a dateTime value representing the current local system time.

	

NTHINDEXOF
	

source, test, index, [ignoreCase]
	Returns zero-based index of the Nth, represented by index value, occurrence of test in source , or -1 if not found. ignoreCase is a optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	
POWER
	expression, exponent
	Returns the value of specified numeric expression
raised to the power of specified numeric exponent .

	

REGEXMATCH
	

regex, test
	Returns flag that determines if test , interpreted as a string, is a match for specified regex string-based regular expression.

	

REGEXVAL
	

regex, test
	Returns value from test , interpreted as a string, that is matched by specified regex string-based regular expression.

	

REPLACE
	
source, test, replace, [ignoreCase]
	Returns a string where all instances of test found in source are replaced with replace value - all parameters interpreted as strings. ignoreCase is a
optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	
REVERSE
	
expression
	Returns string where all characters in expression
interpreted as a string are reversed.

	
ROUND
	
expression
	Returns the nearest integer value to the specified numeric expression

	Function
	Arguments
	Description

	

SPLIT
	
source, delimiter, index, [ignoreCase]
	Returns zero-based Nth, represented by index , value in source split by delimiter , or null if out of range. ignoreCase is a optional boolean flag, defaults to
false , to determine if string comparison is case sensitive.

	
SQRT
	
expression
	Returns the square root of the specified numeric
expression

	

STARTSWITH
	
source, test,
[ignoreCase]
	Returns flag that determines if source string starts with test string. ignoreCase is a optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	

STRCOUNT
	
source, test,
[ignoreCase]
	Returns count of occurrences of test in source . ignoreCase is a optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	

STRCMP
	

left, right, [ignoreCase]
	Returns -1 if left is less-than right , 1 if left is greater-than right , or 0 if left equals right . ignoreCase is a optional boolean flag, defaults to false , to determine if string comparison is case sensitive.

	

SUBSTR
	
source, index,
[length]
	Returns portion of source interpreted as a string starting at index . If length is specified, this will be the maximum number of characters returned; otherwise, remaining characters in string will be returned.

	
TRIM
	
expression
	Removes white-space from the beginning and end of
expression interpreted as a string.

	
TRIMLEFT
	
expression
	Removes white-space from the beginning of
expression interpreted as a string.

	
TRIMRIGHT
	
expression
	Removes white-space from the end of expression
interpreted as a string.

	Function
	Arguments
	Description

	
UPPER
	
expression
	Returns upper-case representation of expression
interpreted as a string.

	
UTCNOW
	
	Returns a dateTime value representing the current UTC system time.

[bookmark: _Toc24551425]Signal Selection Meta-data Table Definitions
Data publishers can define multiple tables that represent sets of measurements available for filtering desired signals, e.g., AllMeasurements or LocalMeasurements . At a minimum a signal selection table must define a SignalD field of type Guid - all other fields are considered optional. However, without a point tag name or description the measurement may be of little use unless other meta-data is exchanged out-of-band with STTP.
Signal selection tables should represent a simple flattened "view" of available meta-data with as many fields as needed to be useful for measurement selection operations. See usage of ActiveMeasurements in examples.

[bookmark: _Toc24551426]ActiveMeasurements
The ActiveMeasurements table is always expected to be defined. This table represents all measurements considered active and available for subscription. If a data publisher is controlling access to measurements on a per-subscriber basis, this table should only include the measurements the subscriber is allowed to request for subscription.
Typically the data in the ActiveMeasurements table is derived from the conflation of information already defined in other available meta-data condensed to a single table to make filter expressions more productive.
Common fields for the ActiveMeasurements table are defined below. Note that some of the fields are specific to the electric power industry and may not be applicable for other industry implementations and consequently unavailable.
ℹ The STTP data publisher API will automatically generate the ActiveMeasurements
table when primary meta-data tables are defined, see the DefineMetadata function.

	Column Name
	Data Type
	Description

	ID
	string
	A measurement key identifier formatted as {instance}:
{id}

	SignalID
	Guid
	Unique identifier for the measured value

	PointTag
	string
	Unique alpha-numeric identifier for the measured value

	AlternateTag
	string
	Secondary alpha-numeric identifier for the measured value

	SignalReference
	string
	Alpha-numeric reference to original signal source, e.g., location in source protocol

	Device
	string
	Alpha-numeric device acronym that is the source of the measurement

	FramesPerSecond
	int
	Expected data rate, in received samples per second, of measurement

	Protocol
	string
	Source protocol that generated measurement

	SignalType
	string
	Signal type acronym of measurement

	EngineeringUnits
	string
	Engineering units of measurement

	PhasorID
	int
	ID of associated phasor meta-data record

	PhasorType
	string
	When measurement is a phasor, type of phasor: voltage (V) or current (I)

	Phase
	string
	When measurement is a phasor, phase e.g.: (A), (B), (C), (+), (-), etc.

	Adder
	double
	Recommended additive linear adjustment of value to be applied

	Multiplier
	double
	Recommended multiplicative linear adjustment of value to be applied

	Company
	string
	Acronym of company that is publishing the measurement

	Column Name
	Data Type
	Description

	Longitude
	decimal
	Longitude of device location publishing the measurement

	Latitude
	decimal
	Latitude of the device location publishing the measurement

	Description
	string
	Description of the measurement

	UpdatedOn
	dateTime
	Timestamp of last update of measurement meta-data

[bookmark: _Toc24551427]Primary Meta-data Table Definitions
STTP meta-data is designed around the notion of a data set. Meta-data represented by a data set allows for rich and extensible information description.
Outside the expected ActiveMeasurements signal selection meta-data table definition, no other meta-data tables are required to be defined. However, to make data exchange useful for industry specific STTP implementations, a common set of meta-data should be defined.
The STTP data publisher API currently defines three primary data tables to define enough useful meta-data to allow a measurement data subscription to be converted into another protocol, e.g., IEEE C37.118. When these tables are defined, the data publisher API will auto- generate the ActiveMeasurements table from the provided data.

[bookmark: _Toc24551428]DeviceDetail
This meta-data table contains details about the devices that are the sources of available measurements. By convention, measurements that are not associated with a device are not sent in meta-data exchanges.

	Column Name
	Data Type
	Description

	UniqueID
	Guid
	Unique identifier for the device

	OriginalSource
	string
	If device was proxied through another protocol, original source

	Column Name
	Data Type
	Description

	IsConcentrator
	boolean
	Flag that determines if device is a container for other devices

	Acronym
	string
	Alpha-numeric device acronym

	Name
	string
	Free form device name

	AccessID
	int
	ID code associated with device, if any

	ParentAcronym
	string
	If device is a child of another device, acronym of parent device

	FramesPerSecond
	int
	Expected data rate, in received samples per second, for device measurements

	CompanyAcronym
	string
	Company that owns device

	VendorAcronym
	string
	Vendor that manufactures device

	VendorDeviceName
	string
	Vendor device name and/or model information

	Longitude
	decimal
	Longitude of device location

	Latitude
	decimal
	Latitude of the device location

	InterconnectionName
	string
	Eastern, Western, etc.

	ContactList
	string
	Names / e-mail addresses of parties responsible for device

	Enabled
	boolean
	Flag that determines if device is currently enabled

	UpdatedOn
	dateTime
	Timestamp of last update of device meta-data

[bookmark: _Toc24551429]MeasurementDetail
This meta-data table contains details about the measurements available for subscription.

	Column Name
	Data
Type
	Description

	Column Name
	Data Type
	Description

	DeviceAcronym
	string
	Alpha-numeric device acronym that is the source of the measurement

	ID
	string
	A measurement key identifier formatted as
{instance}:{id}

	SignalID
	Guid
	Unique identifier for the measured value

	PointTag
	string
	Unique alpha-numeric identifier for the measured value

	SignalReference
	string
	Alpha-numeric reference to original signal source, e.g., location in source protocol

	SignalAcronym
	string
	Type of signal, e.g., FREQ for frequency

	PhasorSourceIndex
	int
	Index of phasor source if measurement type is a phasor

	Description
	string
	Description of the measurement

	Enabled
	boolean
	Flag that determines if measurement is currently enabled

	UpdatedOn
	dateTime
	Timestamp of last update of measurement meta-data

[bookmark: _Toc24551430]PhasorDetail
This meta-data table, specific to data exchanges containing electrical measurements with phasor values, contains details about the phasors whose vector magnitude and angle component measurements are available for subscription.

	Column Name
	Data Type
	Description

	ID
	int
	Numeric auto-incrementing identifier

	DeviceAcronym
	string
	Alpha-numeric device acronym that is the source of the phasor

	Column Name
	Data Type
	Description

	Label
	string
	Free form phasor label

	Type
	string
	Type of phasor, i.e.: voltage (V) or current (I)

	Phase
	string
	Phase of phasor, e.g.: (A), (B), (C), (+), (-), etc.

	DestinationPhasorID
	int
	Associated phasor, e.g., typical voltage for current

	SourceIndex
	int
	Index of phasor as defined in source protocol

	UpdatedOn
	dateTime
	Timestamp of last update of DestinationPhasorID meta-data

[bookmark: _Toc24551431]Common Time-Series Statistics

	Source
	Tag Suffix
	Name
	Description

	Device
	!PMU-ST1
	Data Quality Errors
	Number of data quality errors reported by device during last reporting interval.

	Device
	!PMU-ST2
	Time Quality Errors
	Number of time quality errors reported by device during last reporting interval.

	Device
	!PMU-ST3
	Device Errors
	Number of device errors reported by device during last reporting interval.

	Device
	!PMU-ST4
	Measurements Received
	Number of measurements received from device during last reporting interval.

	
Device
	
!PMU-ST5
	Measurements Expected
	Expected number of measurements received from device during last reporting interval.

	
Device
	
!PMU-ST6
	Measurements With Error
	Number of measurements received while device was reporting errors during last reporting interval.

	
Device
	
!PMU-ST7
	Measurements Defined
	Number of defined measurements (per frame) from device during last reporting interval.

	InputStream
	!IS-ST2
	Last Report Time
	Timestamp of last received data frame from input stream.

	
InputStream
	
!IS-ST1
	
Total Frames
	Total number of frames received from input stream during last reporting interval.

	
InputStream
	
!IS-ST3
	Missing Frames
	Number of frames that were not received from input stream during last reporting interval.

	Source
	Tag Suffix
	Name
	Description

	
InputStream
	
!IS-ST18
	
Missing Data
	Number of data units that were not received at least once from input stream during last reporting interval.

	
InputStream
	
!IS-ST11
	Total Data Frames
	Number of data frames received from input stream during last reporting interval.

	
InputStream
	
!IS-ST12
	Total Configuration Frames
	Number of configuration frames received from input stream during last reporting interval.

	
InputStream
	
!IS-ST13
	Total Header Frames
	Number of header frames received from input stream during last reporting interval.

	
InputStream
	
!IS-ST9
	
Received Configuration
	Boolean value representing if input stream has received (or has cached) a configuration frame during last reporting interval.

	
InputStream
	
!IS-ST10
	Configuration Changes
	Number of configuration changes reported by input stream during last reporting interval.

	
InputStream
	
!IS-ST6
	Minimum Latency
	Minimum latency from input stream, in milliseconds, during last reporting interval.

	
InputStream
	
!IS-ST7
	Maximum Latency
	Maximum latency from input stream, in milliseconds, during last reporting interval.

	
InputStream
	
!IS-ST14
	Average Latency
	Average latency, in milliseconds, for data received from input stream during last reporting interval.

	InputStream
	!IS-ST15
	Defined Frame Rate
	Frame rate as defined by input stream during last reporting interval.

	Source
	Tag Suffix
	Name
	Description

	
InputStream
	
!IS-ST16
	Actual Frame Rate
	Latest actual mean frame rate for data received from input stream during last reporting interval.

	
InputStream
	
!IS-ST17
	Actual Data Rate
	Latest actual mean Mbps data rate for data received from input stream during last reporting interval.

	
InputStream
	
!IS-ST4
	
CRC Errors
	Number of CRC errors reported from input stream during last reporting interval.

	
InputStream
	
!IS-ST5
	Out of Order Frames
	Number of out-of-order frames received from input stream during last reporting interval.

	
InputStream
	
!IS-ST8
	Input Stream Connected
	Boolean value representing if input stream was continually connected during last reporting interval.

	
InputStream
	
!IS-ST19
	Total Bytes Received
	Number of bytes received from the input source during last reporting interval.

	
InputStream
	
!IS-ST20
	Lifetime Measurements
	Number of processed measurements reported by the input stream during the lifetime of the input stream.

	
InputStream
	
!IS-ST21
	Lifetime Bytes Received
	Number of bytes received from the input source during the lifetime of the input stream.

	
InputStream
	
!IS-ST22
	Minimum Measurements Per Second
	The minimum number of measurements received per second during the last reporting interval.

	
InputStream
	
!IS-ST23
	Maximum Measurements Per Second
	The maximum number of measurements received per second during the last reporting interval.

	Source
	Tag Suffix
	Name
	Description

	
InputStream
	
!IS-ST24
	Average Measurements Per Second
	The maximum number of measurements received per second during the last reporting interval.

	
InputStream
	
!IS-ST25
	Lifetime Minimum Latency
	Minimum latency from input stream, in milliseconds, during the lifetime of the input stream.

	
InputStream
	
!IS-ST26
	Lifetime Maximum Latency
	Maximum latency from input stream, in milliseconds, during the lifetime of the input stream.

	
InputStream
	
!IS-ST27
	Lifetime Average Latency
	Average latency, in milliseconds, for data received from input stream during the lifetime of the input stream.

	InputStream
	!IS-ST28
	Up Time
	Total number of seconds input stream has been running.

	
OutputStream
	
!OS-ST3
	Expected Measurements
	Number of expected measurements reported by the output stream during last reporting interval.

	
OutputStream
	
!OS-ST2
	Received Measurements
	Number of received measurements reported by the output stream during last reporting interval.

	
OutputStream
	
!OS-ST4
	Processed Measurements
	Number of processed measurements reported by the output stream during last reporting interval.

	
OutputStream
	
!OS-ST1
	Discarded Measurements
	Number of discarded measurements reported by output stream during last reporting interval.

	
OutputStream
	
!OS-ST6
	Published Measurements
	Number of published measurements reported by output stream during last reporting interval.

	Source
	Tag Suffix
	Name
	Description

	
OutputStream
	
!OS-ST7
	Downsampled Measurements
	Number of downsampled measurements reported by the output stream during last reporting interval.

	
OutputStream
	
!OS-ST5
	Measurements Sorted by Arrival
	Number of measurements sorted by arrival reported by the output stream during last reporting interval.

	
OutputStream
	
!OS-ST8
	Missed Sorts by Timeout
	Number of missed sorts by timeout reported by the output stream during last reporting interval.

	
OutputStream
	
!OS-ST9
	Frames Ahead of Schedule
	Number of frames ahead of schedule reported by the output stream during last reporting interval.

	
OutputStream
	
!OS-ST10
	Published Frames
	Number of published frames reported by the output stream during last reporting interval.

	
OutputStream
	
!OS-ST11
	Output Stream Connected
	Boolean value representing if the output stream was continually connected during last reporting interval.

	
OutputStream
	
!OS-ST12
	Minimum Latency
	Minimum latency from output stream, in milliseconds, during last reporting interval.

	
OutputStream
	
!OS-ST13
	Maximum Latency
	Maximum latency from output stream, in milliseconds, during last reporting interval.

	
OutputStream
	
!OS-ST14
	Average Latency
	Average latency, in milliseconds, for data published from output stream during last reporting interval.

	
OutputStream
	
!OS-ST15
	Connected Clients
	Number of clients connected to the command channel of the output stream during last reporting interval.

	Source
	Tag Suffix
	Name
	Description

	OutputStream
	!OS-ST16
	Total Bytes Sent
	Number of bytes sent from output stream during last reporting interval.

	
OutputStream
	
!OS-ST17
	Lifetime Measurements
	Number of processed measurements reported by the output stream during the lifetime of the output stream.

	
OutputStream
	
!OS-ST18
	Lifetime Bytes Sent
	Number of bytes sent from the output source during the lifetime of the output stream.

	
OutputStream
	
!OS-ST19
	Minimum Measurements Per Second
	The minimum number of measurements sent per second during the last reporting interval.

	
OutputStream
	
!OS-ST20
	Maximum Measurements Per Second
	The maximum number of measurements sent per second during the last reporting interval.

	
OutputStream
	
!OS-ST21
	Average Measurements Per Second
	The maximum number of measurements sent per second during the last reporting interval.

	
OutputStream
	
!OS-ST22
	Lifetime Minimum Latency
	Minimum latency from output stream, in milliseconds, during the lifetime of the output stream.

	
OutputStream
	
!OS-ST23
	Lifetime Maximum Latency
	Maximum latency from output stream, in milliseconds, during the lifetime of the output stream.

	
OutputStream
	
!OS-ST24
	Lifetime Average Latency
	Average latency from output stream, in milliseconds, during the lifetime of the output stream.

	
OutputStream
	
!OS-ST25
	Lifetime Discarded Measurements
	Number of discarded measurements reported by output stream during the lifetime of the output stream.

	Source
	Tag Suffix
	Name
	Description

	
OutputStream
	
!OS-ST26
	Lifetime Downsampled Measurements
	Number of downsampled measurements reported by the output stream during the lifetime of the output stream.

	OutputStream
	!OS-ST27
	Up Time
	Total number of seconds output stream has been running.

	
Publisher
	
!PUB-ST1
	Publisher Connected
	Boolean value representing if the publisher was continually connected during last reporting interval.

	
Publisher
	
!PUB-ST2
	Connected Clients
	Number of clients connected to the command channel of the publisher during last reporting interval.

	
Publisher
	
!PUB-ST3
	Processed Measurements
	Number of processed measurements reported by the publisher during last reporting interval.

	Publisher
	!PUB-ST4
	Total Bytes Sent
	Number of bytes sent by the publisher during the last reporting interval.

	
Publisher
	
!PUB-ST5
	Lifetime Measurements
	Number of processed measurements reported by the publisher during the lifetime of the publisher.

	Publisher
	!PUB-ST6
	Lifetime Bytes Sent
	Number of bytes sent by the publisher during the lifetime of the publisher.

	
Publisher
	
!PUB-ST7
	Minimum Measurements Per Second
	The minimum number of measurements sent per second during the last reporting interval.

	
Publisher
	
!PUB-ST8
	Maximum Measurements Per Second
	The maximum number of measurements sent per second during the last reporting interval.

	Source
	Tag Suffix
	Name
	Description

	
Publisher
	
!PUB-ST9
	Average Measurements Per Second
	The average number of measurements sent per second during the last reporting interval.

	
Publisher
	!PUB- ST10
	Lifetime Minimum Latency
	Minimum latency from output stream, in milliseconds, during the lifetime of the publisher.

	
Publisher
	!PUB- ST11
	Lifetime Maximum Latency
	Maximum latency from output stream, in milliseconds, during the lifetime of the publisher.

	
Publisher
	!PUB- ST12
	Lifetime Average Latency
	Average latency from output stream, in milliseconds, during the lifetime of the publisher.

	Publisher
	!PUB- ST13
	Up Time
	Total number of seconds publisher has been running.

	
Subscriber
	
!SUB-ST1
	Subscriber Connected
	Boolean value representing if the subscriber was continually connected during last reporting interval.

	
Subscriber
	
!SUB-ST3
	Processed Measurements
	Number of processed measurements reported by the subscriber during last reporting interval.

	Subscriber
	!SUB-ST4
	Total Bytes Received
	Number of bytes received from subscriber during last reporting interval.

	Subscriber
	!SUB-ST5
	Authorized Signal Count
	Number of signals authorized to the subscriber by the publisher.

	
Subscriber
	
!SUB-ST2
	Subscriber Authenticated
	Boolean value representing if the subscriber was authenticated to the publisher during last reporting interval.

	Subscriber
	!SUB-ST6
	Unauthorized Signal Count
	Number of signals denied to the subscriber by the publisher.

	Source
	Tag Suffix
	Name
	Description

	
Subscriber
	
!SUB-ST7
	Lifetime Measurements
	Number of processed measurements reported by the subscriber during the lifetime of the subscriber.

	
Subscriber
	
!SUB-ST8
	Lifetime Bytes Received
	Number of bytes received from subscriber during the lifetime of the subscriber.

	
Subscriber
	
!SUB-ST9
	Minimum Measurements Per Second
	The minimum number of measurements received per second during the last reporting interval.

	
Subscriber
	!SUB- ST10
	Maximum Measurements Per Second
	The maximum number of measurements received per second during the last reporting interval.

	
Subscriber
	!SUB- ST11
	Average Measurements Per Second
	The average number of measurements received per second during the last reporting interval.

	
Subscriber
	!SUB- ST12
	Lifetime Minimum Latency
	Minimum latency from output stream, in milliseconds, during the lifetime of the subscriber.

	
Subscriber
	!SUB- ST13
	Lifetime Maximum Latency
	Maximum latency from output stream, in milliseconds, during the lifetime of the subscriber.

	
Subscriber
	!SUB- ST14
	Lifetime Average Latency
	Average latency from output stream, in milliseconds, during the lifetime of the subscriber.

	Subscriber
	!SUB- ST15
	Up Time
	Total number of seconds subscriber has been running.

	System
	!SYSTEM- ST1
	CPU Usage
	Percentage of CPU currently used by this process.

	System
	!SYSTEM- ST2
	Average CPU Usage
	Average percentage of CPU used by this process.

	Source
	Tag Suffix
	Name
	Description

	System
	!SYSTEM- ST3
	Memory Usage
	Amount of memory currently used by this process in megabytes.

	
System
	!SYSTEM- ST4
	Average Memory Usage
	Average amount of memory used by this process in megabytes.

	System
	!SYSTEM- ST5
	Thread Count
	Number of threads currently used by this process.

	System
	!SYSTEM- ST6
	Average Thread Count
	Average number of threads used by this process.

	
System
	!SYSTEM- ST7
	Threading Contention Rate
	Current thread lock contention rate in attempts per second.

	
System
	
!SYSTEM- ST8
	Average Threading Contention Rate
	
Average thread lock contention rate in attempts per second.

	System
	!SYSTEM- ST9
	IO Usage
	Amount of IO currently used by this process in kilobytes per second.

	System
	!SYSTEM- ST10
	Average IO Usage
	Average amount of IO used by this process in kilobytes per second.

	
System
	!SYSTEM- ST11
	IP Data Send Rate
	Number of IP datagrams (or bytes on Mono) currently sent by this process per second.

	
System
	!SYSTEM- ST12
	Average IP Data Send Rate
	Average number of IP datagrams (or bytes on Mono) sent by this process per second.

	
System
	!SYSTEM- ST13
	IP Data Receive Rate
	Number of IP datagrams (or bytes on Mono) currently received by this process per second.

	Source
	Tag Suffix
	Name
	Description

	
System
	!SYSTEM- ST14
	Average IP Data Receive Rate
	Average number of IP datagrams (or bytes on Mono) received by this process per second.

	System
	!SYSTEM- ST15
	Up Time
	Total number of seconds system has been running.

[bookmark: _Toc24551432]STTP Data Sets
A data set represents an in-memory cache of records that is structured similarly to information defined in a database. The data set object consists of a collection of data table objects.
Data tables define of collection of data columns where each data column defines a name and data type. Data columns can also be computed where its value would be derived from other columns and functions defined in an expression.
Data tables also define a set of data rows where each data row defines a record of information with a field value for each defined data column. Each field value can be null regardless of the defined data column type.
A data set schema and associated records can be read from and written to XML documents. The XML specification used for serialization is the standard for W3C XML Schema Definition Language (XSD). See the ReadXml and WriteXml functions.
ℹ The STTP data set functionality is modeled after, and generally interoperable with, the .NET DataSet. Serialized XML schemas and data saved from a .NET DataSet can be successfully parsed from an STTP data set and vice versa. Note that STTP requires that the schema be included with serialized XML data sets, see XmlWriteMode.WriteSchema. The STTP API does not attempt to infer a schema from the data. Interoperability with .NET XML schemas also includes DataColumn expression functionality, however, STTP defines more functions than the .NET implementation, so a serialized STTP data set that includes column expressions using functions not available to a .NET DataColumn will fail to evaluate when accessed from within .NET. Another difference from .NET is that the STTP implementation is always case-insensitive for table and column name lookups as the primary use-case for STTP data sets is for use with filter expressions.

[bookmark: _Toc24551433]GSF Grafana Functions
The Grafana interfaces defined in the Grid Solutions Framework allow for aggregation and operational functions on a per-series and per-group basis. The following defines the available functions and group operations that are available for a data source implementing the GSF Grafana interface, e.g., openHistorian. Note that any data source that implements the GrafanaDataSourceBase class will automatically inherit this functionality.

[bookmark: _Toc24551434]Series Functions
Various functions are available that can be applied to each series that come from a specified expression, see full list of available functions below. Series expressions can be an individual listing of point tag names, Guids or measurement keys separated by semi-colons - or - a filter expression that will select several series at once. Filter expressions and individual points, with or without functions, may be selected simultaneously when separated with semi-colons:
Example: PPA:15; STAT:20; SetSum(Count(PPA:8; PPA:9; PPA:10)); FILTER
ActiveMeasurements WHERE SignalType IN ('IPHA', 'VPHA'); Range(PPA:99; Sum(FILTER ActiveMeasurements WHERE SignalType = 'FREQ'; STAT:12))
Many series functions have parameters that can be required or optional – optional values will always define a default state. Parameter values must be a constant value or, where applicable, a named target available from the expression. Named targets are intended to work with group operations, i.e., Set or Slice, since group operations provide access to multiple series values from within a single series. The actual value used for a named target parameter will be the first encountered value for the target series – in the case of slice group operations, this will be the first value encountered in each slice. Named target parameters can optionally specify multiple fall-back series and one final default constant value each separated by a semi-colon to use when the named target series is not available, e.g.: SliceSubtract(1, T1;T2;5.5, T1;T2;T3)
To better understand named targets, follow these example steps:
1. The following expression produces two unwrapped voltage phase angle series:

UnwrapAngle(DOM_GPLAINS-BUS1:VH; TVA_SHELBY-BUS1:VH)

2. Values from one of the series can now be substracted from values in both of the series at every 1/30 of a second slice:

SliceSubtract(0.0333, TVA_SHELBY-BUS1:VH, UnwrapAngle(DOM_GPLAINS-BUS1:VH; TVA_SHELBY-BUS1:VH))
3. Using a Slice operation on functions that return multiple series can produce multiple values at the same timestamp, however, since values produced by one of the series will now always be zero, the zero values can be excluded:

ExcludeRange(0, 0, SliceSubtract(0.0333, TVA_SHELBY-BUS1:VH, UnwrapAngle(DOM_GPLAINS-BUS1:VH; TVA_SHELBY-BUS1:VH)))

[bookmark: _Toc24551435]Execution Modes
Each of the series functions include documentation for the mode of execution required by the function. These modes determine the level of processing expense and memory burden incurred by the function. The impacts of the execution modes increase as the time-range or resolution of the series data increases.

	Execution Mode
	Description
	Impact

	Deferred enumeration
	Series data will be processed serially outside of function
	Minimal processing and memory impact

	Immediate enumeration
	Series data will be processed serially inside the function
	Increased processing impact, minimal memory impact

	Immediate in- memory array load
	Series data will be loaded into an array and processed inside the function
	Higher processing and memory impact

[bookmark: _Toc24551436]Group Operations
Each Grafana series function can be operated on in aggregate using a group operator prefix:

Set
Series functions can operate over the set of defined series, producing a single result series, where the target function is executed over each series, horizontally, end-to-end by prefixing the function name with Set.

Example: SetAverage(FILTER ActiveMeasurements WHERE SignalType='FREQ')

Slice
Series functions can operate over the set of defined series, producing a single result series, where the target function is executed over each series as a group, vertically, per time-slice by prefixing the function name with Slice. When operating on a set of series data with a slice function, a new required parameter for time tolerance will be introduced as the first parameter to the function. The parameter is a floating-point value that must be greater than or equal to zero that represents the desired time tolerance, in seconds, for the time slice.
Example: SliceSum(0.0333, FILTER ActiveMeasurements WHERE SignalType='IPHM')

[bookmark: _Toc24551437]Available Functions

Average Minimum Maximum Total Range Count Distinct
AbsoluteValue Add
Multiply Round Floor Ceiling Truncate
StandardDeviation Median
Mode Top Bottom Random

First Last
Percentile Difference TimeDifference Derivative TimeIntegration Interval IncludeRange ExcludeRange FilterNaN UnwrapAngle WrapAngle Label
Average
Returns a single value that represents the mean of the values in the source series.
Signature: Average(expression)
Returns: Single value
Example: Average(FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Average , Avg , Mean
Execution: Immediate enumeration

Minimum
Returns a single value that is the minimum of the values in the source series.
Signature: Minimum(expression)
Returns: Single value
Example: Minimum(FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Minimum , Min
Execution: Immediate enumeration

Maximum
Returns a single value that is the maximum of the values in the source series.
Signature: Maximum(expression)
Returns: Single value
Example: Maximum(FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Maximum , Max
Execution: Immediate enumeration

Total
Returns a single value that represents the sum of the values in the source series.
Signature: Total(expression)
Returns: Single value
Example: Total(FILTER ActiveMeasurements WHERE SignalType='IPHM')
Variants: Total , Sum
Execution: Immediate enumeration

Range
Returns a single value that represents the range, i.e., maximum - minimum , of the values in the source series.
Signature: Range(expression)
Returns: Single value
Example: Range(FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Range
Execution: Immediate enumeration

Count
Returns a single value that is the count of the values in the source series.
Signature: Count(expression)

Returns: Single value
Example: Count(PPA:1; PPA:2; PPA:3)
Variants: Count
Execution:Immediate enumeration

Distinct
Returns a series of values that represent the unique set of values in the source series.
Signature: Distinct(expression)
Returns: Series of values
Example: Distinct(FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Distinct , Unique
Execution: Deferred enumeration

AbsoluteValue
Returns a series of values that represent the absolute value each of the values in the source series.
Signature: AbsoluteValue(expression)
Returns: Series of values
Example: AbsoluteValue(FILTER ActiveMeasurements WHERE SignalType='CALC')
Variants: AbsoluteValue , Abs
Execution: Deferred enumeration

Add
Returns a series of values that represent each of the values in the source series added with N. N is a floating point value representing an additive offset to be applied to each value the source series. N can either be a constant value or a named target available from the expression.
Signature: Add(N, expression)
Returns: Series of values
Example: Add(1.5, FILTER ActiveMeasurements WHERE SignalType='CALC')

Variants: Add
Execution: Deferred enumeration

Subtract
Returns a series of values that represent each of the values in the source series subtracted by
N. N is a floating point value representing an subtractive offset to be applied to each value the source series. N can either be a constant value or a named target available from the expression.
Signature: Subtract(N, expression)
Returns: Series of values
Example: Subtract(2.2, FILTER ActiveMeasurements WHERE SignalType='CALC')
Variants: Subtract
Execution: Deferred enumeration

Multiply
Returns a series of values that represent each of the values in the source series multiplied by N. N is a floating point value representing a multiplicative factor to be applied to each value the source series. N can either be a constant value or a named target available from the expression.
Signature: Multiply(N, expression)
Returns: Series of values
Example: Multiply(1.5, FILTER ActiveMeasurements WHERE SignalType='CALC')
Variants: Multiply
Execution: Deferred enumeration

Divide
Returns a series of values that represent each of the values in the source series divided by N. N is a floating point value representing a divisive factor to be applied to each value the source series. N can either be a constant value or a named target available from the expression.
Signature: Divide(N, expression)
Returns: Series of values
Example: Divide(1.732, FILTER ActiveMeasurements WHERE SignalType='CALC')

Variants: Divide
Execution: Deferred enumeration

Round
Returns a series of values that represent the rounded value, with N fractional digits, of each of the values in the source series. N, optional, is a positive integer value representing the number of decimal places in the return value - defaults to 0. N can either be a constant value or a named target available from the expression. Any target values that fall between 0 and 1 will be treated as a percentage.
Signature: Round([N = 0], expression)
Returns: Series of values
Example: Round(3, FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Round
Execution: Deferred enumeration

Floor
Returns a series of values that represent the smallest integral value that is less than or equal to each of the values in the source series.
Signature: Floor(expression)
Returns: Series of values
Example: Floor(FILTER ActiveMeasurements WHERE SignalType='IPHM')
Variants: Floor
Execution: Deferred enumeration

Ceiling
Returns a series of values that represent the smallest integral value that is greater than or equal to each of the values in the source series.
Signature: Ceiling(expression)
Returns: Series of values
Example: Ceiling(FILTER ActiveMeasurements WHERE SignalType='IPHM')

Variants: Ceiling , Ceil
Execution: Deferred enumeration

Truncate
Returns a series of values that represent the integral part of each of the values in the source series.
Signature: Truncate(expression)
Returns: Series of values
Example: Truncate(FILTER ActiveMeasurements WHERE SignalType='IPHM')
Variants: Truncate , Trunc
Execution: Deferred enumeration

StandardDeviation
Returns a single value that represents the standard deviation of the values in the source series. First parameter, optional, is a boolean flag representing if the sample based calculation should be used - defaults to false, which means the population based calculation should be used.
Signature: StandardDeviation([useSampleCalc = false], expression)
Returns: Single value
Example: StandardDeviation(FILTER ActiveMeasurements WHERE SignalType='VPHM')
Variants: StandardDeviation , StdDev
Execution: Immediate in-memory array load

Median
Returns a single value that represents the median of the values in the source series.
Signature: Median(expression)
Returns: Single value
Example: Median(FILTER ActiveMeasurements WHERE SignalType='ALOG')
Variants: Median , Med , Mid
Execution: Immediate in-memory array load

Mode
Returns a single value that represents the mode of the values in the source series.
Signature: Mode(expression)
Returns: Single value
Example: Mode(FILTER TOP 5 ActiveMeasurements WHERE SignalType='DIGI')
Variants: Mode
Execution: Immediate in-memory array load

Top
Returns a series of N, or N% of total, values that are the largest in the source series. N is either a positive integer value, representing a total, that is greater than zero - or - a floating point value, suffixed with '%' representing a percentage, that must range from greater than 0 to less than or equal to 100. Second parameter, optional, is a boolean flag representing if time in dataset should be normalized - defaults to true. N can either be a constant value or a named target available from the expression. Any target values that fall between 0 and 1 will be treated as a percentage.
Signature: Top(N|N%, [normalizeTime = true], expression)
Returns: Series of values
Example: Top(50%, FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Top , Largest
Execution: Immediate in-memory array load

Bottom
Returns a series of N, or N% of total, values that are the smallest in the source series. N is either a positive integer value, representing a total, that is greater than zero - or - a floating point value, suffixed with '%' representing a percentage, that must range from greater than 0 to less than or equal to 100. Second parameter, optional, is a boolean flag representing if time in dataset should be normalized - defaults to true. N can either be a constant value or a named target available from the expression. Any target values that fall between 0 and 1 will be treated as a percentage.

Signature: Bottom(N|N%, [normalizeTime = true], expression)
Returns: Series of values
Example: Bottom(100, false, FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Bottom , Bot , Smallest
Execution: Immediate in-memory array load

Random
Returns a series of N, or N% of total, values that are a random sample of the values in the source series. N is either a positive integer value, representing a total, that is greater than zero
- or - a floating point value, suffixed with '%' representing a percentage, that must range from greater than 0 to less than or equal to 100. Second parameter, optional, is a boolean flag representing if time in dataset should be normalized - defaults to true. N can either be a constant value or a named target available from the expression. Any target values that fall between 0 and 1 will be treated as a percentage.
Signature: Random(N|N%, [normalizeTime = true], expression)
Returns: Series of values
Example: Random(25%, FILTER ActiveMeasurements WHERE SignalType='VPHM')
Variants: Random , Rand , Sample
Execution: Immediate in-memory array load

First
Returns a series of N, or N% of total, values from the start of the source series. N, optional, is either a positive integer value, representing a total, that is greater than zero - or - a floating point value, suffixed with '%' representing a percentage, that must range from greater than 0 to less than or equal to 100 - defaults to 1. N can either be a constant value or a named target available from the expression. Any target values that fall between 0 and 1 will be treated as a percentage.
Signature: First([N|N% = 1], expression)
Returns: Series of values
Example: First(5%, FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: First
Execution: Immediate in-memory array load

Last
Returns a series of N, or N% of total, values from the end of the source series. N, optional, is either a positive integer value, representing a total, that is greater than zero - or - a floating point value, suffixed with '%' representing a percentage, that must range from greater than 0 to less than or equal to 100 - defaults to 1. N can either be a constant value or a named target available from the expression. Any target values that fall between 0 and 1 will be treated as a percentage.
Signature: Last([N|N% = 1], expression)
Returns: Series of values
Example: Last(150, FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Last
Execution: Immediate in-memory array load

Percentile
Returns a single value that represents the Nth order percentile for the sorted values in the source series. N is a floating point value, representing a percentage, that must range from 0 to 100.

Signature: Percentile(N[%], expression)
Returns: Single value
Example: Percentile(10%, FILTER ActiveMeasurements WHERE SignalType='VPHM')
Variants: Percentile , Pctl
Execution: Immediate in-memory array load

Difference
Returns a series of values that represent the difference between consecutive values in the source series.
Signature: Difference(expression)
Returns: Series of values
Example: Difference(FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Difference , Diff

Execution: Deferred enumeration

TimeDifference
Returns a series of values that represent the time difference, in time units, between consecutive values in the source series. The units parameter, optional, specifies the type of time units and must be one of the following: Seconds, Nanoseconds, Microseconds, Milliseconds, Minutes, Hours, Days, Weeks, Ke (i.e., traditional Chinese unit of decimal time), Ticks (i.e., 100- nanosecond intervals), PlanckTime or AtomicUnitsOfTime - defaults to Seconds.
Signature: TimeDifference([units = Seconds], expression)
Returns: Series of values
Example: TimeDifference(FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: TimeDifference , TimeDiff , Elapsed
Execution: Deferred enumeration

Derivative
Returns a series of values that represent the rate of change, per time units, for the difference between consecutive values in the source series. The units parameter, optional, specifies the type of time units and must be one of the following: Seconds, Nanoseconds, Microseconds, Milliseconds, Minutes, Hours, Days, Weeks, Ke (i.e., traditional Chinese unit of decimal time), Ticks (i.e., 100-nanosecond intervals), PlanckTime or AtomicUnitsOfTime - defaults to Seconds.
Signature: Derivative([units = Seconds], expression)
Returns: Series of values
Example: Derivative(FILTER ActiveMeasurements WHERE SignalType='FREQ')
Variants: Derivative , Der
Execution: Deferred enumeration

TimeIntegration
Returns a single value that represents the time-based integration, i.e., the sum of V(n) * (T(n)
- T(n-1)) where time difference is calculated in the specified time units, of the values in the source series. The units parameter, optional, specifies the type of time units and must be one of the following: Seconds, Nanoseconds, Microseconds, Milliseconds, Minutes, Hours, Days, Weeks, Ke (i.e., traditional Chinese unit of decimal time), Ticks (i.e., 100-nanosecond intervals), PlanckTime or AtomicUnitsOfTime - defaults to Hours.
Signature: TimeIntegration([units = Hours], expression)
Returns: Single value
Example: TimeIntegration(FILTER ActiveMeasurements WHERE SignalType='CALC' AND PointTag LIKE '%-MW:%')
Variants: TimeIntegration , TimeInt
Execution: Immediate enumeration

Interval
Returns a series of values that represent a decimated set of the values in the source series based on the specified interval N, in time units. N is a floating-point value that must be greater than or equal to zero that represents the desired time interval, in time units, for the returned data. The units parameter, optional, specifies the type of time units and must be one of the following: Seconds, Nanoseconds, Microseconds, Milliseconds, Minutes, Hours, Days, Weeks, Ke (i.e., traditional Chinese unit of decimal time), Ticks (i.e., 100-nanosecond intervals), PlanckTime or AtomicUnitsOfTime - defaults to Seconds. Setting N value to zero will request non- decimated, full resolution data from the data source. A zero N value will always produce the most accurate aggregation calculation results but will increase query burden on data source for large time ranges. N can either be a constant value or a named target available from the expression.
Signature: Interval(N, [units = Seconds], expression)
Returns: Series of values
Example: Sum(Interval(0, FILTER ActiveMeasurements WHERE SignalType LIKE '%PHM'))
Variants: Interval
Execution: Deferred enumeration

IncludeRange
Returns a series of values that represent a filtered set of the values in the source series where each value falls between the specified low and high. The low and high parameter values are floating-point numbers that represent the range of values allowed in the return series. Third parameter, optional, is a boolean flag that determines if range values are inclusive, i.e., allowed values are >= low and <= high - defaults to false, which means values are exclusive, i.e., allowed values are > low and < high. Function allows a fourth optional parameter that is a boolean flag - when four parameters are provided, third parameter determines if low value is inclusive and forth parameter determines if high value is inclusive. The low and high parameter values can either be constant values or named targets available from the expression.
Signature: IncludeRange(low, high, [inclusive = false], expression) -or- IncludeRange(low, high, [lowInclusive = false], [highInclusive = false], expression) Returns: Series of values
Example: IncludeRange(59.90, 60.10, FILTER ActiveMeasurements WHERE
SignalType='FREQ')
Variants: IncludeRange , Include
Execution: Deferred enumeration

ExcludeRange
Returns a series of values that represent a filtered set of the values in the source series where each value falls outside the specified low and high. The low and high parameter values are floating-point numbers that represent the range of values excluded in the return series. Third parameter, optional, is a boolean flag that determines if range values are inclusive, i.e., excluded values are <= low or >= high - defaults to false, which means values are exclusive, i.e., excluded values are < low or > high. Function allows a fourth optional parameter that is a boolean flag - when four parameters are provided, third parameter determines if low value is inclusive and forth parameter determines if high value is inclusive. The low and high parameter values can either be constant values or named targets available from the expression.
Signature: ExcludeRange(low, high, [inclusive = false], expression) -or- ExcludeRange(low, high, [lowInclusive = false], [highInclusive = false], expression) Returns: Series of values
Example: ExcludeRange(-180.0, 180.0, true, false, FILTER ActiveMeasurements WHERE
SignalType LIKE '%PHA') Variants: ExcludeRange , Exclude Execution: Deferred enumeration
FilterNaN
Returns a series of values that represent a filtered set of the values in the source series where each value is a real number, i.e., value is not NaN. First parameter, optional, is a boolean flag that determines if infinite values should also be excluded - defaults to true.
Signature: FilterNaN([alsoFilterInfinity = true], expression)
Returns: Series of values
Example: FilterNaN(FILTER ActiveMeasurements WHERE SignalType='VPHM')
Variants: FilterNaN
Execution: Deferred enumeration

UnwrapAngle
Returns a series of values that represent an adjusted set of angles that are unwrapped, per specified angle units, so that a comparable mathematical operation can be executed. For example, for angles that wrap between -180 and +180 degrees, this algorithm unwraps the values to make the values mathematically comparable. The units parameter, optional, specifies the type of angle units and must be one of the following: Degrees, Radians, Grads, ArcMinutes, ArcSeconds or AngularMil - defaults to Degrees.
Signature: UnwrapAngle([units = Degrees], expression)
Returns: Series of values
Example: UnwrapAngle(FSX_PMU2-PA1:VH; REA_PMU3-PA2:VH)
Variants: UnwrapAngle , Unwrap
Execution: Immediate in-memory array load

WrapAngle
Returns a series of values that represent an adjusted set of angles that are wrapped, per specified angle units, so that angle values are consistently between -180 and +180 degrees. The units parameter, optional, specifies the type of angle units and must be one of the following: Degrees, Radians, Grads, ArcMinutes, ArcSeconds or AngularMil - defaults to Degrees.
Signature: WrapAngle([units = Degrees], expression)
Returns: Series of values
Example: WrapAngle(Radians, FILTER TOP 5 ActiveMeasurements WHERE SignalType LIKE '%PHA')
Variants: WrapAngle , Wrap
Execution: Deferred enumeration

Label
Renames a series with the specified label value. If multiple series are targeted, labels will be indexed starting at one, e.g., if there are three series in the target expression with a label value of "Max", series would be labeled as "Max 1", "Max 2" and "Max 3". Group operations on this function will be ignored. The label parameter also supports substitutions when root target metadata can be resolved. For series values that directly map to a point tag, metadata value substitutions for the tag can be used in the label value - for example: {ID}, {SignalID}, {PointTag},
{AlternateTag}, {SignalReference}, {Device}, {FramesPerSecond}, {Protocol}, {ProtocolType},
{SignalType}, {EngineeringUnits}, {PhasorType}, {Company}, {Description} - where applicable, these substitutions can be used in any combination.
Signature: Label(value, expression)
Returns: Series of values
Example: Label('AvgFreq', SetAvg(FILTER TOP 20 ActiveMeasurements WHERE SignalType='FREQ'))
Variants: Label , Name
Execution: Deferred enumeration

[bookmark: _Toc24551438]Grafana Data Source Plug-in for openHistorian
This repository defines a Grafana data source plug-in for the openHistorian.

The openHistorian is a back office system developed by the GridProtectionAlliance that is designed to efficiently integrate and archive process control data, e.g., SCADA, synchrophasor, digital fault recorder, or any other time-series data used to support process operations.
The openHistorian is optimized to store and retrieve large volumes of time-series data quickly and efficiently, including high-resolution sub- second information that is measured very rapidly, e.g., many thousands of times per second.

[bookmark: _Toc24551439]Usage
Building a metric query using the openHistorian Grafana data source begins with the selection of a query type, one of: Element List, Filter Expression or Text Editor. The Element List and Filter Expression types are query builder screens that assist with the selection of the desired series. The Text Editor screen allows for manual entry of a query expression that will select the desired series.

[bookmark: _Toc24551440]Element List Query Builder
The Element List query builder is used to directly select the series to trend. New elements can be selected and searched by clicking the +
button at the end of the ELEMENTS row. Typing text into the drop-down box will start filtering the available data points for selection.
[image:]

[bookmark: _Toc24551441]Filter Expression Query Builder
The Filter Expression query builder is used to define an expression (see filter expression syntax) to select the series to trend. Complex expressions can be created that will dynamically query data series. Query results will mutate as the availability of the source point data changes, i.e., series derived from the query result will change as data points are added or removed in the openHistorian.

[image:]

[bookmark: _Toc24551442]Text Editor Query Builder
The Text Editor query builder is used to manually specify a text based query expression for openHistorian Grafana data source metrics. The expression can be any combination of directly specified point tag names, Guid identifiers or measurement keys separated by semi-colons - or - a filter expression that will select several series at once.
[image:]

Note that switching from the Element List or Filter Expression query builder screens to the Text Editor will keep the expression as built so far to allow further manual updates to the expression. However, any manual changes made to the filter expression while on the Text Editor query screen will not flow back to the Element List or Filter Expression query builder screens. Moreover, switching back to or between the Element List and Filter Expression query builder screens will automatically clear out any existing expression.

Direct Tag Specification
Direct specification of metric queries can be entered using the Text Editor as semi-colon separated point tag references in a variety of forms, e.g., measurement key identifiers: PPA:4; PPA:2 - formatted as {instance}:{id} , unique Guid based signal identifiers: 538A47B0-F10B-4143- 9A0A-0DBC4FFEF1E8; E4BBFE6A-35BD-4E5B-92C9-11FF913E7877, or point tag names: GPA_TESTDEVICE:FREQ; GPA_TESTDEVICE:FLAG.

Filter Expressions
Metric queries using the Text Editor can also be specified as filter expressions that use a syntax that is similar to SQL. For example, the following expression would select the first 5 encountered series for any device with a name that starts with SHELBY:

FILTER TOP 5 ActiveMeasurements WHERE Device LIKE 'SHELBY%'

See filter expression syntax and the ActiveMeasurements table definition for more information.

Combined Expressions
When using the Text Editor to build a query, both filter expressions and directly specified tags, with or without series functions, may be selected simultaneously when separated with semi-colons, for example:

PPA:15; STAT:20; SetSum(Count(PPA:8; PPA:9; PPA:10));
FILTER ActiveMeasurements WHERE SignalType IN ('IPHA', 'VPHA');
Range(PPA:9; Sum(FILTER ActiveMeasurements WHERE SignalType = 'FREQ'; STAT:2))

Complex combined expressions that contain both directly specified point tags and filter expressions are only available when using the
Text Editor query builder.

[bookmark: _Toc24551443]Series Functions
The openHistorian Grafana data source includes various aggregation and operational functions, e.g., Average or StandardDeviation, which can be applied on a per-series and per-group basis. Functions applied to the group of available series can operate either on the entire set, end-to- end, or by time-slice. See GSF Grafana Functions for more detail and the full list of available functions.
The Element List and Filter Expression query builder screens define the available functions as pick lists that get applied over the selected series by clicking the + button at the end of the FUNCTIONS row:
[image:]

Many series functions have parameters that are required or optional – optional parameter values will always define a default state. Parameter values must be a constant value or, where applicable, a named target available from the expression. Named targets are intended to work with group operations, i.e., Set or Slice, since group operations provide access to multiple series values from within a single series. The actual value used for a named target parameter will be the first encountered value for the target series – in the case of Slice group operations, this will be the first value encountered in each time-slice. Named target parameters can optionally specify multiple fall-back series and one final default constant value each separated by a semi-colon to use when the named target series is not available, e.g.: SliceSubtract(1, T1;T2;5.5, T1;T2;T3)

[bookmark: _Toc24551444]Alarm Annotations
The openHistorian Grafana data source supports Annotation style queries for configured time-series alarms. If any alarms are configured for a host system, then they can be accessed from the associated openHistorian Grafana data source. Note that alarm measurements are stored in the local statistics archive by default, e.g., OHSTAT , so make sure this is the data source of the configured annotation query.
Supported alarm annotation queries include #ClearedAlarms and #RaisedAlarms , which will return all alarms for the queried time period:
[image:]
Filter expressions of the configured time-series alarms are also supported, e.g.:

FILTER TOP 10 ClearedAlarms WHERE Severity >= 500 AND TagName LIKE '%DEVICE1%'

or

FILTER RaisedAlarms WHERE Description LIKE '%High Frequency%'

See Alarms table definition for available query fields in the ClearedAlarms and RaisedAlarms datasets. Note that series functions are not currently supported on user specified alarm annotation queries.
All annotation queries are internally executed using the Interval function with a time parameter of zero to request non-decimated, full resolution data from the data source to make sure no alarm values are skipped for the specified query range. Although this operation produces the most accurate query results, its use increases query burden on the data source – as a result, queries for long time ranges using alarm annotations could affect overall dashboard performance.

[bookmark: _Toc24551445]Configuration
The openHistorian Grafana data source works both for the standalone openHistorian 2.0 and the openHistorian 1.0 which is embedded into products like the openPDC. Configuration options for each of the target openHistorian versions are defined below.
Starting with openHistorian 2.4, Grafana can be seamlessly integrated with the openHistorian such that the openHistorian primary web site can act as a reverse proxy to an instance of Grafana accessible from: http://localhost:8180/grafana/. Deployments of the openHistorian with hosted Grafana integration include pre-configured data sources for the primary data and statistics archives named OHDATA and OHSTAT respectively.
Configuration of an openHistorian Grafana data source is normally as simple as specification of a URL and proper authentication options. The required authentication options depend on the configuration of the openHistorian web API which can be set as anonymous or require authentication and/or SSL.

[bookmark: _Toc24551446]openHistorian 2.0 Configuration
The openHistorian 2.0 automatically includes Grafana web service interfaces starting with version 2.0.410.

For archived time-series data, the Grafana web service is hosted within the existing MVC based web server architecture and is just “on” with nothing extra to configure. To use the interface, simply register a new openHistorian Grafana data source using the path /api/grafana/ from the existing web based user interface URL, typically: http://localhost:8180/api/grafana/ *.
When the openHistorian service is hosting multiple historian instances, a specific historian instance can be referenced using a path like
/instance/{instanceName}/grafana/ , e.g.: http://localhost:8180/instance/ppa/grafana/ *.

The typical HTTP setting for Access in any instance of the openHistorian Grafana data source is proxy. However, when referencing a hosted Grafana instance that is integrated with the openHistorian 2.0 via reverse proxy, the Access setting can be set to direct such that the user's authentication headers can flow back through the openHistorian for user security validation:
[image:]
Using direct access allows the openHistorian authenticated user to be the authenticated user in Grafana. Otherwise, proxy access will also work but will require a user for Grafana to use for authenticating to the data source.

openHistorian 2.0 Statistics Data
The openHistorian 2.0 also includes a pre-configured local statistics archive that can be accessed using an instance of the openHistorian Grafana data source with the following URL: http://localhost:6356/api/grafana/ * – note that the trailing slash is relevant.
Statistical information is archived every ten seconds for a variety of data source and system parameters measured for the openHistorian 2.0 service.
The HTTP setting for Access in an instance of the openHistorian Grafana data source that is connecting to the openHistorian 2.0 statistics archive should always be set to proxy.

[bookmark: _Toc24551447]openHistorian 1.0 Configuration
The openHistorian 1.0 is a core component of the Grid Solutions Framework Time-series Library and is used for archival of statistics and other time-series data. Applications built using the openHistorian 1.0 can also be integrated with Grafana.
The HTTP setting for Access in an instance of the openHistorian Grafana data source that is connecting to the openHistorian 1.0 should always be set to proxy.

Time-series Library Applications with Existing Grafana Support
Recent versions of the following Time-series Library (TSL) applications now include support for Grafana. To use the Grafana interface with an existing openHistorian 1.0 archive, simply register a new openHistorian Grafana data source using the appropriate interface URL as defined below * – note that the trailing slashes are relevant:

	TSL Application (min version)
	Statistics Interface
	Archive Interface (if applicable)

	TSL Application (min version)
	Statistics Interface
	Archive Interface (if applicable)

	[image:] openPDC (v2.2.133)
	http://localhost:6352/api/grafana/
	http://localhost:6452/api/grafana/

	[image:] SIEGate (v1.3.7)
	http://localhost:6354/api/grafana/
	http://localhost:6454/api/grafana/

	[image:] substationSBG (v1.1.7)
	http://localhost:6358/api/grafana/
	http://localhost:6458/api/grafana/

	[image:] openMIC (v0.9.47)
	http://localhost:6364/api/grafana/
	http://localhost:6464/api/grafana/

	[image:] PDQTracker (v1.0.175)
	http://localhost:6360/api/grafana/
	http://localhost:6460/api/grafana/

	[image:] openECA (v0.1.44)
	http://localhost:6362/api/grafana/
	http://localhost:6462/api/grafana/

Enabling Grafana Services with Custom Time-series Library Applications
If the assembly GrafanaAdapters.dll is deployed with an existing Time-series Library based project, e.g., Project Alpha, the 1.0 openHistorian Grafana interfaces will be available per configured openHistorian instance. For Grafana support, the time-series project needs to use Grid Solutions Framework dependencies for version 2.1.332 or beyond — or to be built with Project Alpha starting from version 0.1.159.
When the GrafanaAdapters.dll is deployed in the time-series project installation folder, a new Grafana data service entry will be added in the local configuration file, e.g., ProjectAlpha.exe.config , for each configured historian when the new DLL is detected and loaded. Each historian web service instance for Grafana will need to be enabled and configured with a unique port:

<statGrafanaDataService>
<add name="Endpoints" value="http.rest://+:6357/api/grafana" description="Semicolon delimited list of URIs where the web service can be accessed." encrypted="false" />
<add name="Contract" value="GrafanaAdapters.IGrafanaDataService, GrafanaAdapters" description="Assembly qualified name of the contract interface implemented by the web service." encrypted="false" />
<add name="Singleton" value="True" description="True if the web service is singleton; otherwise False." encrypted="false" />
<add name="SecurityPolicy" value="" description="Assembly qualified name of the authorization policy to be used for securing the web service." encrypted="false" />
<add name="PublishMetadata" value="True" description="True if the web service metadata is to be published at all the endpoints; otherwise False." encrypted="false" />
<add name="AllowCrossDomainAccess" value="False" description="True to allow Silverlight and Flash cross-domain access to the web service." encrypted="false" />
<add name="AllowedDomainList" value="*" description="Comma separated list of domain names for Silverlight and Flash cross- domain access to use when allowCrossDomainAccess is true. Use * for domain wildcards, e.g., *.consoto.com." encrypted="false" />
<add name="CloseTimeout" value="00:02:00" description="Maximum time allowed for a connection to close before raising a timeout exception." encrypted="false" />
<add name="Enabled" value="True" description="Determines if web service should be enabled at startup." encrypted="false" />
</statGrafanaDataService>

If the service is deployed on a Windows machine and is configured using the default NT SERVICE account, the service will not have rights to start the web service on a new port and will need to be registered. As an example, the following command can be used to register a new Grafana web service end-point on port 6357 for the ProjectAlpha service:

netsh http add urlacl url=http://+:6357/api/grafana user="NT SERVICE\ProjectAlpha"

The netsh command must be run with administrative privileges. The + host designation is used to bind to the URL and port to all local interfaces; otherwise, a specific IP must be provided.

LocalHost Note
* Replace localhost as needed with the IP or DNS name of system hosting the archive.

[bookmark: _Toc24551448]Excluded Data Flags
All time-series data stored in the openHistorian includes measurement state flags that describe the data quality state of an archived value. The openHistorian Grafana data source includes the ability to filter queried data to the desired data quality states by excluding specified data flags. Default excluded data flag filters can by defined at a data source level and overridden at an individual metric query level. To change the default flags for an individual metric query, click the Query Options button near the end of the query TYPE row:

[image:]

The initial set of excluded data flags for an individual metric query is inherited from the flags defined for the associated data source and get established when the query is first created. The excluded data flags for an existing metric query will not be affected by any subsequent updates to the flags at the data source level, i.e., any changes made to the excluded data flags at the data source level will only be used as defaults for new metric queries and will not affect any existing queries.

[bookmark: _Toc24551449]Installation
Starting with openHistorian 2.4, Grafana can be installed along with the openHistorian such that the openHistorian's primary self-hosted web site can act as a reverse proxy to Grafana. When configured in this mode, the openHistorian will auto-launch the grafana-server executable and act as a front-end server for Grafana. Additionally, the openHistorian will maintain user security synchronization such that a user with an Administrator role in openHistorian will also have an Admin role in Grafana, or if a user has an Editor role in openHistorian they will have an Editor role in Grafana, and so on.
For installation within a stand-alone instance of Grafana, see the offical instructions for steps to install the openHistorian Grafana data source using the Grafana CLI tool. Note that Grafana 3.0 or better is required to enable plug-in support.
Alternately the openHistorian Grafana data source can be installed into a Grafana instance by cloning this repository directly into the Grafana plug-ins directory, i.e., data/plugins/.

[bookmark: _Toc24551450]PI Web API Datasource for Grafana
This data source provides access to OSIsoft PI and PI-AF data through PI Web API.
[image:]

[bookmark: _Toc24551451]Usage
Create a new instance of the data source from the Grafana Data Sources administration page.

It is recommended to use "proxy" access settings. You may need to add "Basic" authentication to your PIWebAPI server configuration and add credentials to the data source settings.
NOTE: If you are using PI-Coresight, it is recommended to create a new instance of PI Web API for use with this plugin. See PI Web API Documentation for more information on configuring PI Web API.
[bookmark: _Toc24551452]Template Variables
Child elements are the only supported template variables. Currently, the query interface requires a json query. An example config is shown below.
{"path": "PISERVER\\DatabaseName\\ElementNameWithChildren"}

[image:]

[bookmark: _Toc24551453]Event Frames and Annotations
This datasource can use AF Event Frames as annotations.
[image:]

Creating an annotation query and use the Event Frame category as the query string. Color and regex replacement strings for the name are supported.

For example:

[bookmark: _Toc24551454]Installation
Install using the grafana-cli or clone the repository directly into your Grafana plugin directory.

grafana-cli plugins install gridprotectionalliance-osisoftpi-datasource

[bookmark: _Toc24551455]Trademarks
All product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement.
OSIsoft, the OSIsoft logo and logotype, and PI Web API are all trademarks of OSIsoft, LLC.

[bookmark: _Toc24551456]Gateway Exchange Protocol Overview
The Gateway Exchange Protocol is an open source measurement-based publish/subscribe transport protocol used to securely exchange time-series data and automatically synchronize meta-data between two applications. The protocol supports sending real-time and historical data at full or down-sampled resolutions. When sending historical data, the replay speed can be controlled dynamically for use in visualizations to enable users to see data faster or slower than recorded in real-time. GEP streaming communication speed can be set to “as-quickly-as-possible” as is typically desirable for system-to-system communication.
For synchrophasor data, use of GEP overcomes the scaling limits imposed by frame-based protocols. By their nature, configuration frames in frame-based protocols are much larger than data frames and can quickly exceed practical UDP data packet size limits. Synchrophasor implementations often use a combination of TCP and UDP to help postpone frame size limitations using TCP to send the configuration frame and UDP to send data frame; however, frame based protocols still have a fixed maximum frame size of 64K that can be transmitted in one frame even when the transport is TCP. Use of a measurement-based protocol, like GEP, overcomes these issues.
Additionally, using GEP provides the following benefits over frame-based protocols:
· Automatic exchange of authorized metadata information between GEP appliances (the publisher approves subscriber data access based on data filters – which can be broad or as specific as measurement level approval.)
· Can reduce bandwidth required for communicating data by using lossless compression techniques.
· Allows the subscribing GEP appliance to start and stop the data stream as needed.
· Allows the subscribing GEP appliance to dynamically change the measurements points which are being received (within set of what publisher allows).
· Reduces latency for most synchrophasor data architectures since data is communicated “on receipt” without the need for data concentration into time-based frames.
To test the impact of sending data in small packets rather that large (often very large) frames, GEP has been tested using UDP over the internet with a set of approximately 125 million synchrophasor measurements using 4 different protocols: IEEE C7.118-2005, IEC 61850-90-5 with no frame retransmission, IEC 61850-90-5 with one frame retransmission, and GEP. The results shown in Figure 1 below show the advantage of the small GEP packet size on reducing data loss.

 Figure 1. GEP Data Loss vs. Frame-based Protocols

[bookmark: _Toc24551457]The GEP Protocol
The wire protocol employed by GEP implements a publish/subscribe data exchange model using a simple command driven service with tightly compressed, fast binary serialization of time-series values. The protocol does not require a predefined or fixed configuration – that is, the time-series values arriving in one data packet can be different than those arriving in another. Each packet of data consists of a collection of time-series values; each time-series value is a structure containing an ID, a time-stamp, a value and associated flags.
The GEP is implemented using a TCP/IP command channel (for actions such as subscription) and optionally a UDP/IP data channel (the actual data to be transmitted). The TCP command channel is used to reliably negotiate session specific required communication, state and protocol parameters. It is used to authenticate with other GEP communications appliances, exchange metadata on points with them, and request points for subscription. This channel can also use transport layer security (TLS) for secure communications. The UDP data channel is used to send compact, binary encoded packets of identifiable measured values along with a timestamp accurate to one ten-millionth of a second (e.g., a tick) and flags that can be used to indicate time and data quality. The data on the UDP channel can also be encrypted using keys that are dynamically exchanged on the command channel. When the UDP data channel is not used, data is transmitted on the TCP channel.
Subscriber Command Format -- The subscriber command consists of a payload marker, payload length, command code and actual payload bytes. To easily separate multiple commands on the wire, the first four bytes in the command wire format is a payload marker, specifically: 0xAA, 0xBB, 0xCC, 0xDD. The next four bytes (a 32-bit integer) represent the total size of the payload including the command code. The next byte is the subscriber command code. See: Appendix A, GEP Subscriber Commands.
Publisher Response Format -- The publisher response consists of a response code, an in-response- to command code, payload length and actual payload bytes. The first byte is the response code. See: Appendix B, GEP Publisher Responses. The second byte is command code for which this response applies. The command code is required even if the response is unsolicited. The next

four bytes (a 32-bit integer) represent the payload length. The actual bytes of the payload follow, if any, and are specific to the actual response. For example, in the case of a data packet response, the payload will contain serialized measurements.
The serialized measurements, “the data”, are constructed in GEP to be easy to parse so that third- party systems can easily consume and use data. The data structure is a repeated binary encoding of an ID, timestamp, measured value and flags (e.g., time and data quality).
· Point ID – A 128-bit GUID identifier provided in the command channel. This value is compressed to 2 bytes on the wire using run-time cache.
· Time – A 64-bit integer based timestamp in “ticks” (100’s of nanoseconds). This value is also compressed to 2 bytes on the wire using an offset to an absolute time value which is updated frequently.
· Value – Typically a 32-bit floating point real number (4 bytes). GEP supports other data payload sizes.
· Flags – For synchrophasor data these flags are embedded in a 16-bit integer representing the IEEE C37.118 data quality flags.

[bookmark: _Toc24551458]Security
GEP can be implemented with or without its security features. GEP enables implementation of both strong access control and encryption. For GPA’s products, security is managed through components in the Grid Solutions Framework (GSF). These features include:
Administrator access control where multiple role-based options are available. This access control can be implemented to integrate with existing enterprise authentication, such as, Microsoft Active Directory, Kerberos, and local accounts. The GSF also provides the capability for multi-factor authentication strategies using hardware/software tokens, e.g., RSA SecurID Hardware Tokens.
Authentication / access control for data communication includes strong authentication of trusted appliances through the out of band exchange of symmetric keys using transport layer security (TLS). Publishers have a fine-grained mechanism to control access to specific data by authenticated partner (or trusted) GEP appliances.
Integrity-protected logging for operating logs and configuration logs as well as remote log storage capability for additional security. The GSF leverages standardized logging to the OS so that errors and events can be captured through enterprise log integration systems.
Key Management – GEP is configurable to allows use and manage private keys in a highly isolated environment. Using GSF transport security features, GEP is also capable of utilizing key management services that offer X.509 identity certificates for authentication. In the absence of that infrastructure, GSF is able to use self-signed X.509 identity certificates that are securely communicated out-of-band.
GEP facilitates full compliance with NERC CIP standards with complete logging of configuration changes and administrative actions.

As seen in Table 1 below, GEP is an alternative to the use of VPN for securing communication of streaming utility operating data.

	VPN Approach
	GEP Approach

	· Security	managed	at	a	network interface level
	· Security managed at the application layer, with fully flexible pairwise security

	· Traffic only protected once it reaches the VPN tunnel, susceptible at every previous level
	· Traffic is protected from the very beginning, protecting it directly in the application which eliminates exposure via other apps on the system

	· VPN failure can result in either unencrypted data being sent, or complete blockage of transmission until the network issue can be resolved
	· Connection failure results in retried connections, renegotiating the key at each try

	· If network issues are present, the connection may require intervention to either start or stop once the network issues are corrected
	· If network issues are present, the connection will be re-established without intervention once they are corrected

Table 1. Comparison of VPN and GEP

[bookmark: _Toc24551459]GEP APIs
GEP API’s are available in C/C++, .NET (including Mono and Unity 3D) and Java to enable these applications to easily be integrated with the applications that use GEP and avoid limitations imposed by use of frame-based protocols. An open source application, the GEP Subscription Tester is a multi-platform graphical application that can be used to verify connectivity to applications implementing a GEP data publisher.

Two API calls exist to subscribe to real-time data:
1) bool SynchronizedSubscribe(bool compactFormat, int framesPerSecond, double lagTime, double leadTime, string filterExpression, bool useLocalClockAsRealTime = false, bool ignoreBadTimestamps = false, bool allowSortsByArrival = true, long timeResolution = Ticks.PerMillisecond, bool allowPreemptivePublishing = true, DownsamplingMethod downsamplingMethod = DownsamplingMethod.LastReceived)
2) bool UnsynchronizedSubscribe(bool compactFormat, bool throttled, string filterExpression, double lagTime = 10.0D, double leadTime = 5.0D, bool useLocalClockAsRealTime = false)

These two API calls provide the following possible real-time data subscriptions:
· A synchronized (i.e., concentrated by time) set of subscribed data points:
subscriber.SynchronizedSubscribe(true, 30, 0.5D, 1.0D, "FILTER ActiveMeasurements WHERE Device = 'SHELBY' AND SignalType = 'VPHM'");

· An on-change unsynchronized set of subscribed data points:
subscriber.UnsynchronizedSubscribe(true, false, "PPA:87;PPA:92");

· A throttled (e.g., down-sampled to every few seconds) set of subscribed data points:
subscriber.UnsynchronizedSubscribe(true, true, "POINT:1;POINT:2", 5.0D, 1.0D, false);

[bookmark: _Toc24551460]GEP Subscriber Commands
Table of commands sent by a subscriber and received by a publisher. Note that solicited server commands will receive a Succeeded or Failed response code along with an associated success or failure message. Message type for successful responses will be based on server command - for example, server response for a successful MetaDataRefresh command will return a serialized dataset of the available server metadata. Message type for failed responses will always be a string of text representing the error message.

	Command
	Command Code
	Description

	

MetaDataRefresh
	

0x01
	Meta data refresh command. Requests that server send an updated set of metadata so client can refresh its point list. Successful return message type will be a dataset containing server device and measurement metadata.
Received device list should be defined as children of the "parent" server device connection similar to the way PMUs are defined as children of a parent PDC device connection. Devices and measurements contain unique Guids that should be used to key metadata updates in local
repository.

	

Subscribe
	

0x02
	Subscribe command. Requests a subscription of streaming data from server based on connection string that follows. It will not be necessary to stop an existing subscription before requesting a new one. Successful return message type will be string indicating total number of allowed points. Client should wait for UpdateSignalIndexCache
response code before attempting to parse data.

	
Unsubscribe
	
0x03
	Unsubscribe command. Requests that server stop sending streaming data to the client and cancel the current
subscription.

	

RotateCipherKeys
	

0x04
	Rotate cipher keys. Manually requests that server send a new set of cipher keys for data packet encryption for use on the UDP data channel. There are always two keys, the old one and the new one, to accommodate time slew in transitioning from one key to another. This should only be
used in conjunction with a TLS-based command channel.

	

DefineOperationalModes
	

0x06
	Define operational modes for subscriber connection. As soon as connection is established, requests that server set operational modes that affect how the subscriber and publisher will communicate (e.g., compression or text
encoding style).

	ConfirmNotification
	0x07
	Confirm receipt of a notification. This command is sent in
when a Notify response is received.

	ConfirmBufferBlock
	0x08
	Confirm receipt of a buffer block measurement. This
command is sent when a BufferBlock response is received.

[bookmark: _Toc24551461]GEP Publisher Responses
Table of responses sent by a publisher and received by a subscriber*. Although the subscriber commands and publisher responses will be on two different paths, the response codes are defined as distinct from the command codes to make it easier to identify values from a wire analysis.

	Response
	Response Code
	Description

	
Succeeded
	
0x80
	Command succeeded response. Informs client that its solicited server command succeeded, original
command and success message follow.

	
Failed
	
0x81
	Command failed response. Informs client that its solicited server command failed, original command
and failure message follow.

	DataPacket
	0x82
	Data packet response. Unsolicited response informs
client that a data packet follows.

	
UpdateSignalIndexCache
	
0x83
	Update signal index cache response. Unsolicited response requests that client update its runtime
signal index cache with the one that follows.

	

UpdateCipherKeys
	

0x85
	Update runtime cipher keys response. Response, solicited or unsolicited, requests that client update its runtime symmetric encryption keys with those that follow and use the keys to decrypt the data on the UDP data channel. This should only be used in
conjunction with a TLS-based command channel.

	
DataStartTime
	
0x86
	Data start time response packet. Unsolicited response provides the start time of data being
processed from the first measurement.

	BufferBlock
	0x88
	Buffer block response. Unsolicited response
informs client that a raw buffer block follows.

	Notify
	0x89
	Notify response. Unsolicited response provides a
notification message to the client.

	
NoOP
	
0xFF
	No operation keep-alive ping. It is possible for the command channel to remain quiet for some time, this command allows a periodic test of client
connectivity.

* Technically these are responses to subscriber commands as well as commands sent by the publisher to the subscriber that were not necessarily solicited, but they are referred to only as responses for clarity in understanding and communicating data flow direction.
[bookmark: _Toc24551462]
Creating an Internal GEP Data Transfer between Two Systems
These steps will show you how to create a bidirectional, internal connection between two systems, e.g., an openPDC and SIEGate node. This type of connection should only be used internally. If you are creating a connection over an unsecured network, please see Creating secured gateway connections. Note that very similar steps will apply for creating GEP internal subscriptions between any two GPA products.

In this demonstration setup, we have an openPDC (DEMO02PDC) with sample data flowing in, and a SIEGate (DEMO01SIEGATE) we wish to connect to.

We'll start with SIEGate. In the menu, click on 'Subscription' -> 'Create Internal Subscription'.
[image:]

On the 'Create subscription' page, there are five things we need to enter; Acronym, Name, Hostname, Port, and which data to receive.

[image:]

A brief explanation of these. Acronym refers to the short identifier for the publisher (the system we are connecting to and receiving data from) that will be used to refer to this connection. The name is longer and more descriptive, and does not have the same restrictions. Hostname is the IP address or the hostname of the system that we are planning on connecting to. The port is different depending on which product you are connecting to, and can also vary based on the configuration. The default ports for openPDC and SIEGate are listed for convenience. Selecting what data to receive is generally a matter of following the chart and checking the correct box(es).

In this case, the settings will appear as follows:

[image:]

Once we click save, we're taken to the device configuration page. We can fill in more specific details about the connection we've setup, and can hit 'Save' to enable and start this connection.
[image:]

After we've saved, we're taken to the Devices list. The connection has already started, and it's found our sample (Shelby) device.

[image:]

A quick look at the graph measurements screen shows data has started to flow, as well.

[image:]

If we want to create the reverse of this connection, a very similar series of steps can be followed. First, in the menu, click 'Inputs' -> 'Subscription Based Inputs' -> 'Create Internal Subscription'.

[image:]

The steps from there are identical to the previous, with the exception of which data we wish to receive. Because the SIEGate is externally-facing, we'll want to grab the External metadata.

[image:]

[image:]

[image:]

[bookmark: _Toc24551463]Creating a TLS GEP Data Transfer between Two Systems
SIEGate to SIEGate connections can be made using Transport Layer Security, a highly-secure channel.

In this demonstration setup, we have a SIEGate installation (DEMO01SIEGATE) which is receiving data, and a second SIEGate (DEMO02SIEGATE) which we want to share with. A bidirectional connection will be created, and measurements will be authorised and subscribed.

We'll start with SIEGate on system 2, the system that does not have data. In the menu, click on 'Subscription' -> 'Create Authorization Request'

[image:]
There are three sections we need to fill out; Publisher information, Subscriber information, and TLS.

[image:]In this case, DEMO01SIEGATE is the publisher. We'll fill in the publisher section as follows:
This SIEGate, DEMO02SIEGATE, is the subscriber.
[image:]

In the TLS section, SIEGate has already filled out the name of the certificate file needed to establish the connection. At this point, we have not yet received this certificate; that will come in later. Right now, we only need to check the 'Self-signed' checkbox. (If you are getting a cert from trusted CA, these steps would be different. This is assuming you're using the default certificates that were generated when you installed SIEGate)
[image:]

Altogether, our settings look like this:

[image:]

Once we click create, we're prompted to save our Subscription Request. You'll need to get this file to the publisher in a secure manner; this file will allow them to verify you are you.

After we've saved the request, the device configuration screen is presented.

[image:]

Next, we need to switch over to the publisher, DEMO01SIEGATE. On the publisher, click 'Publication' -> 'Authorize Subscribers'.
[image:]
On this screen, we'll click 'Import SRQ' to load the authorization request from the subscriber
[image:]

[image:]

After we've verified the information is correct, we'll check 'Enabled PG connection'. In this case, we'll also check 'Self-signed'.
[image:]

Next, hit 'Save'.

[image:]

At this point, the publisher know the subscribers information, and will allow the connection. However, there are no measurements authorized, and there is no connection enable the other direction.

First, we'll create an authorization request from this system (DEMO01SIEGate) to the first one ({DEMO02SIEGate}}). In this connection, the publisher and subscriber roles will be reversed, giving us a true, bidirectional path for data exchange.

[image:]

This will be filled out very similarly to the first connection:
[image:]

Save the file, and transfer it securely to the other SIEGate.

Now that we have the reverse connection setup, we'll authorize some measurements to be shared. On this system (DEMO01SIEGATE) we have some points available. To authorize the points, click on 'Publication' -> 'Subscriber Measurement Access'.
[image:]

By default, no measurements are shared:
[image:]

Using the Search box on the right, we'll pick out the Frequency measurement:
[image:]

Tick the box next to the measurement, and hit '<<' to move to the authorized list.
[image:]

At this point, we have completed everything we need to do on this publisher system. Now, we'll return to DEMO02SIEGATE

On the Browse Devices page, locate the new connection, and ensure 'Enabled' is checked.
[image:]

Next, go to 'Subscriber' -> 'Measurement Subscriptions'
[image:]

On this page, we'll see the measurement that was made available.

[image:]

Tick the checkbox, and move it over to 'Subscribed' with the '<<' button.
[image:]

To verify data is flowing, we'll check the graph measurements screen.

[image:]

[bookmark: _Toc24551464]How to Create a Custom Adapter
This guide is designed to aid in the creation of custom adapters for the openPDC. Custom adapters allow users to easily extend the default functionality of the system. The openPDC defines three types of adapters--input, action, and output -- that are each designed to be used for different purposes.
InputAdapters: Typically maps measurements from a data source (i.e., assigns a timestamp and an ID to measured values parsed from a stream of data), new measurements are presented to openPDC by calling void OnNewMeasurements(ICollection<IMeasurement> measurements) method. Interface: IInputAdapter , base class: InputAdapterBase
ActionAdapters: Typically filters and sorts measurements by time allowing adapter to take action on a synchronized set of data provided in the abstract void PublishFrame(IFrame frame, int index) method which adapter overrides (note that frame contains a collection of measurements all collected into the same time-indexed frame bucket). If the action causes the creation of new measurements (e.g., phase angle and magnitude used to calculate power), new measurements are presented to openPDC by calling void OnNewMeasurements(ICollection<IMeasurement> measurements) method. Interface: IActionAdapter , base class: ActionAdapterBase
OutputAdapters: Typically queues all measurements (no sorting) for processing. Queued measurements are presented to the adapter for processing in the void ProcessMeasurements(IMeasurement[] measurements) method -- if measurements continue to build up in memory and are not processed in a timely manner they will be removed from the queue as protective measure to prevent catastrophic out-of-memory failures. Since output adapters are used to archive data this is often the slowest part in the system (disks tend to be a bottleneck), outputs can optionally be set to filter based on a measurement's defined "Source" property -- this allows multiple outputs to be targeted to several different distributed outputs which allows large systems to stay ahead of the incoming data stream.
Interface: IOutputAdapter , base class: OutputAdapterBase
If you feel that one of these adapters suits your needs, continue reading.
Note: Before you begin, please note that this guide assumes you are using Microsoft Visual Studio and C#.

[bookmark: _Toc24551465]Start a new project
1. In the toolbar within Microsoft Visual Studio, go to "File > New > Project...".
2. Under "Project types" on the left, go to "Visual C# > Windows".
3. Under "Templates" on the right, select "Class library".
4. Enter a name and location for the project.
5. Select the "OK" button.

[bookmark: _Toc24551466]Add references
1. In the Solution Explorer within Visual Studio, right-click "References" and select "Add Reference...".
2. Select the "Browse" tab and navigate to your installation directory.
3. Select GSF.Core.dll and GSF.TimeSeries.dll , then choose "OK".
4. At the top of the autogenerated class file, add the following code to the existing using statements.

using GSF.TimeSeries;
using GSF.TimeSeries.Adapters;

[bookmark: _Toc24551467]Extending one of the base classes
The next thing you will want to do is to change the name of the autogenerated class and extend the base class corresponding to your chosen adapter type. The following three code snippets show example class names as well as the three adapter base classes.

public class MyInputAdapter : InputAdapterBase
{
}

public class MyActionAdapter : ActionAdapterBase
{
}

public class MyOutputAdapter : OutputAdapterBase
{
}

Once you have properly entered the class definition, you can quickly generate definitions for abstract methods defined in the base class. Click on the name of the base class, click the icon that appears at the far left of the line and click the option labeled "Implement abstract class". The following image shows the use of this feature.
[image:]

[bookmark: _Toc24551468]Implementation
The following subsections will go over the details about the methods and properties in each adapter that you can override or use.

All adapter types
This section will go over methods and properties used by all the adapter types.

ConnectionString
Once the adapter has been fully loaded from the database, the ConnectionString property can be used to access the connection string that was defined for it. However, the system also parses the connection string and places the key-value pairs into a Dictionary so it is recommended to use the Settings property instead. For an example of an adapter that uses the ConnectionString property, check the adapters in the MySqlAdapters project (part of the Synchrophasor solution).

Settings
Once the adapter has been fully loaded from the database, the connection string is parsed and the key-value pairs are placed in a Dictionary known as the Settings property. Typical usage of this property can be found below in the description of the Initalize() method.

Initialize()

public override void Initialize()
{
base.Initialize();
// custom initialization goes here
}

The Initialize() method can be overridden by your custom adapter class to initialize user- definable settings. This method is called by the system after the connection string has been set and the settings have been parsed. It is typically used in the following manner.
If your adapter has any system resources that need to be released at the end of its lifecycle, you will need to override the Dispose(bool) method to do it. Typically, any code created for custom disposal should go in the section that will be done only when the object is disposed of by calling Dispose() . If you are using the TVA C# code snippets, typing "disposec" inside your class and then pressing the Tab key on your keyboard will automatically generate the code you see above.

OnStatusMessage(string) and OnStatusMessage(string, params object[])
If your adapter needs to report status to the user at any time, the OnStatusMessage() method can be used to display a message on the openPDCConsole. Some typical uses of this method include the following.

OnStatusMessage("Attempting connection...");
OnStatusMessage("{0} measurements processed in {1} seconds", m_measurementCount, m_upTime);

OnProcessException(Exception)
If your adapter encounters an error that needs to be reported, the OnProcessException(Exception) method can be used to do so.

DataSource
DataSource is a collection of database tables stored in memory. This collection is available to all adapters. The tables that are stored in DataSource are defined by the ConfigurationEntity table in the database where SourceName is the name of the table in
the database and RuntimeName is the name by which the adapter recognizes the table. Typical use of the DataSource is shown in the following example.

// Lookup alternate tag for given measurement key private string LookupAlternateTag(MeasurementKey key)
{
try
{
DataRow row =
DataSource.Tables["ActiveMeasurements"].Select(string.Format("ID = '{0}'", key.ToString()))[0];
return row["AlternateTag"].ToString();
}
catch
{
return "undefined";
}
}

GetShortStatus(int)

public override string GetShortStatus(int maxLength)
{
return "Short status";
GetShortStatus(int) is used by the system when listing adapters on the console. When implementing this method, you do not need to make sure your string is shorter than maxLength. Note, however, that the system will truncate the returned string.
ActionAdapterBase contains an implementation of this method that displays the number of input measurements and the number of output measurements.

IsInputMeasurement(MeasurementKey)
Users of your adapter have the option of specifying exactly which measurements should be processed by your adapter. If you wish to enforce this constraint in your adapter's implmementation, you can use the IsInputMeasurement(MeasurementKey) method to determine whether a given measurement was selected by the user to be processed by the adapter. ActionAdapterBase automatically filters measurements (in QueueMeasurementsForProcessing()) using this method before they are sent to the adapter (in PublishFrame()). Typical use of IsInputMeasurement(MeasurementKey) is shown in the following snippet.

IMeasurement measurement = getMeasurementFromSomewhere(); if (IsInputMeasurement(measurement.Key))
{
// process measurement
}

WaitForInitialize() and WaitForInitialize(int)
If you feel the need to enter your custom code into the Start() method before calling base.Start() , then your code will bypass many of the safeguards that were placed in the base class. The WaitForInitialize() method was designed to help solve this problem. If your custom code relies on objects that are initialized in your Initialize() method, then you have the option of calling the WaitForInitialize() method manually.
Additionally, if there is a possibility that your Initialize() method will never finish (for instance, if it throws an exception), then you can specify a timeout (in milliseconds) using the parameter in the WaitForInitialize(int) method. Typical use of WaitForInitialize(int) is shown in the following snippet.

public override void Start()
{
// Make sure we are disconnected before attempting a connection
if (Enabled)
Stop();

WaitForInitialize(10000); // wait for ten seconds or until Initialize() is finished

if (!Initialized)
throw new InvalidOperationException("Timeout to wait for initialization expired."
+ " Start() cannot run before Initialize() is finished.");

// custom code goes here

base.Start();
}

Input adapters
This section will go over methods and properties defined for input adapters that are not defined for all adapter types.

AttemptConnection()

protected override void AttemptConnection()
{
// code to connect goes here
}

This method is used to attempt a connection to the data input source. Any exceptions thrown by this method will result in restart of the connection cycle.

AttemptDisconnection()

protected override void AttemptDisconnection()
{
// code to disconnect goes here
}

This property is used by the system to determine whether to start processing measurements immediately or to wait for notification that the data input source is connected. If the input adapter can guarantee that the data input source is connected when the AttemptConnection() method is completed and also that the data input source is disconnected when the AttemptDisconnection() method is completed, this property should return false. Otherwise, this property should return true and the adapter must call OnConnected() and OnDisconnected() when the data input source is connected and disconnected respectively. In most cases, this property should return false.

OnNewMeasurements(ICollection<IMeasurement>)
When the input adapter has received measurements from the data input source, it needs to call this method in order to notify the system and send in the new measurements.

Action adapters
This section will go over methods and properties defined for action adapters that are not defined for all adapter types.

PublishFrame(IFrame, int)

protected override void PublishFrame(IFrame frame, int index)
{
// implementation goes here
}

This method is called when a collection of measurements is ready to be processed. In most cases, this is where your adapter should process the measurements it receives. This method should not take longer than the time it has available to process the measurements (which depends on the frames per second). For an example of using TVA.Collections.ProcessQueue in order to process measurements outside of this method, see the ProcessQueue example.

OnNewMeasurements(ICollection<IMeasurement>)
If the action adapter creates any measurements, it needs to call this method in order to notify the system and send in the new measurements.

QueueMeasurementsForProcessing(IEnumerable<IMeasurement>)

public override void QueueMeasurementsForProcessing(IEnumerable<IMeasurement> measurements)
{
List<IMeasurement> inputMeasurements = new List<IMeasurement>();
// custom code goes here
if (inputMeasurements.Count > 0) SortMeasurements(inputMeasurements);
}

In most cases, this method should not be overridden. It should be noted, however, that it can be overridden in order to provide a custom filter for measurements that have entered the system. Any measurement sent to the SortMeasurements() method will be processed by the action adapter (assuming the measurements have a valid timestamp). For an example of overriding the QueueMeasurementsForProcessing() method, see the QueueMeasurementsForProcessing example.

Output adapters
This section will go over methods and properties defined for output adapters that are not defined for all adapter types.

AttemptConnection()

protected override void AttemptConnection()
{
// code to connect goes here
}

This method is used to attempt a connection to the data output stream. Any exceptions thrown by this method will result in restart of the connection cycle.

AttemptDisconnection()

protected override void AttemptDisconnection()
{
// code to disconnect goes here
}

This property should return a flag that determines if measurements sent to the adapter are destined for archival. It allows the OutputAdapterCollection to calculate statistics on how many measurements have been archived per minute. Historians would normally set this property to true ; other custom exports would set this property to false .

ProcessMeasurements(IMeasurement[])

protected override void ProcessMeasurements(IMeasurement[] measurements)
{
// implementation goes here
}
This method is called by the system when there are measurements that are ready to be processed. This is the method in which measurements should be processed by your output adapter.
This property is used by the system to determine whether to start processing measurements immediately or to wait for notification that the data output source is connected. If the output adapter can guarantee that the data output source is connected when the AttemptConnection() method is completed and also that the data output source is disconnected when the AttemptDisconnection() method is completed, this property should return false . Otherwise, this property should return true and the adapter must call OnConnected() and OnDisconnected() when the data output source is connected and disconnected respectively. In most cases, this property should return false .

[bookmark: _Toc24551469]Using your custom adapter
In order to use the custom adapter you've just created, you must define a record in one of the custom adapter tables in the database. Input, action, and output adapters should be defined in the CustomInputAdapter , CustomActionAdapter , and CustomOutputAdapter tables respectively. All three tables have the exactly the same fields which are described below.

NodeID
This field contains a GUID that defines which node will be using the custom adapter. The value should match one of the records in the ID column in the Node table.

ID
This field contains an integer used to identify each custom adapter. The values are unique and auto-incrementing. There is no need to manually enter a value here.

AdapterName
This field contains the Acronym used to identify the adapter. By convention, it should be entered in all uppercase with no embedded spaces. Also by convention, underscore '_' is the only special character allowed. You can enter a maximum of 16 characters.

AssemblyName
This field contains the name of the dll into which your custom adapter has been compiled. The dll should be located in the openPDC installation directory.

TypeName
This field contains the name of the class (including the namespace) of the adapter you wrote.

ConnectionString
This field contains the connection string used to set required parameters or to modify default parameters. See the Initialize() method for more details.

LoadOrder
This field defines the relative order in which to retrieve records from the database. The order goes from smallest LoadOrder to largest. The values are not required to be unique.

Enabled
This field contains a boolean value indicating whether your custom adapter is enabled to be used or not. The system will not recognize adapters which are not enabled.

[bookmark: _Toc24551470]Other adapter types
Facile action adapter
The facile action adapter is a very simple action adapter with no built-in measurement concentration capabilities. This requires more work, but also allows you to implement your own concentration algorithms when the built-in concentration supplied by ActionAdapterBase does not suit the needs of your custom adapter. This adapter type can also be used when an adapter needs to be placed in the action adapter layer, but does not need to process its own measurements. Like the previous adapter types, the base class for this adapter is located in the GSF.TimeSeries.Adapters namespace.

using GSF.TimeSeries.Adapters;
public class MyFacileActionAdapter : FacileActionAdapter
{
}

Note: Since there is no built-in concentration, the user must override the QueueMeasurementsForProcessing(IEnumerable<IMeasurement>) method, however the SortMeasurements(IEnumerable<IMeasurement>) method does not exist. Measurements must be filtered and processed according to your QueueMeasurementsForProcessing(IEnumerable<IMeasurement>) method.
In addition to the methods and properties available to all adapter types, the following methods are available to facile action adapters.
OnNewMeasurements(ICollection) QueueMeasurementsForProcessing(IEnumerable) method
Calculated measurement
The calculated measurement type is an extension of the regular action adapter type. This adapter is typically used when the custom adapter needs to calculate values based on its input measurements and reintroduce the calculated values as measurements back into the system. More generally, this adapter type can be used whenever the custom adapter needs to know the signal type of its input measurements. The base class for this adapter is located in the PhasorProtocolAdapters namespace. You will need to add references to GSF.PhasorProtocols.dll and PhasorProtocolAdapters.dll in order to use this adapter type.

using PhasorProtocolAdapters;
public class MyCalculatedMeasurement : CalculatedMeasurementBase
{
}

In addition to the methods and properties available to all adapter types and action adapters, calculated measurements have the following extra properties.

InputMeasurementKeyTypes
Once the input measurements have been defined for this adapter, the InputMeasurementKeyTypes property can be used to access an array of signal types for the input measurements. The index of each signal type matches the index of the corresponding measurement key in the array returned by the InputMeasurementKeys property.

OutputMeasurementTypes
Once the output measurements have been defined for this adapter, the OutputMeasurementTypes property can be used to access an array of signal types for the output measurements. The index of each signal type matches the index of the corresponding output measurement in the array returned by the OutputMeasurements property.

ConfigurationSection
If the custom adapter has settings that need to be saved in the openPDC configuration file, this property represents the section under which these settings should be placed in the configuration file.

[bookmark: _Toc24551471]Examples
[bookmark: _Toc24551472]ProcessQueue example
This example uses ProcessQueue in order to process the measurements outside of the PublishFrame() method. This is the preferred method of processing measurements if the operation takes longer than the available time given to PublishFrame() .

public class ProcessQueueExample : ActionAdapterBase
{
// Fields
private ProcessQueue<IFrame> m_processQueue; private bool m_disposed;

// Initialize()
public override void Initialize()
{
m_processQueue = ProcessQueue<IFrame>.CreateRealTimeQueue(ProcessFrames);
}

// Start()
public override void Start()
{
base.Start(); m_processQueue.Start();
}

// Stop()
public override void Stop()
{
base.Stop(); m_processQueue.Stop();
}

// PublishFrame(IFrame, int)
protected override void PublishFrame(IFrame frame, int index)
{
m_processQueue.Add(frame);
}

// ProcessFrames(IFrame[])
protected void ProcessFrames(IFrame[] frames)
[bookmark: _Toc24551473]QueueMeasurementsForProcessing example
This example uses QueueMeasurementsForProcessing(IEnumerable<IMeasurement>) in order to filter down to the measurements that are timestamped on a specified export interval (in seconds). Note that QueueMeasurementForProcessing(IMeasurement) was also overridden to ensure that these measurements do not escape the filter.

public class QueueMeasurementsForProcessingExample : ActionAdapterBase
{
// Fields
private int m_exportInterval;

// Initialize()
public override void Initialize()
{
base.Initialize();
Dictionary<string, string> settings = Settings; string setting, dataChannel, commandChannel;
m_exportInterval = int.Parse(settings["exportInterval"]);
}

// QueueMeasurementForProcessing(IMeasurement)
public override void QueueMeasurementForProcessing(IMeasurement measurement)
{
QueueMeasurementsForProcessing(new IMeasurement[] { measurement });
}

// QueueMeasurementsForProcessing(IEnumerable<IMeasurement>)
public override void QueueMeasurementsForProcessing(IEnumerable<IMeasurement> measurements)
{
List<IMeasurement> inputMeasurements = new List<IMeasurement>(); Ticks timestamp;

[bookmark: _Toc24551474]Dynamic Calculator

The Dynamic Calculator is an action adapter that can be used to create a calculated signal value. This calculated value is computed at the rate which is configurable and typically the rate of the incoming signals. It’s not recommend that this adapter not be used for signals that span large difference in periodicity (e.g., a 4-second down-sampled value with 60 sample-per-second phasor data.)
The purpose of this action adapter is to compute a value that can be used in near-real time processes prior to data archival or other phasor data processing. The figure below shows how the dynamic calculator works for an example of three input values, or signals.

[image:]

Dynamic Calculator Conceptual Data Flow

The Dynamic Calculator is configured through the “Manage Action Adapters” configuration screen where the “mathematical expression” is entered. This expression can include trigonometric and other functions as shown on page 16.

A description of how to use the Dynamic Calculator is provided through two examples, (1) The simple example of multiplying a signal by a scalar and (2) a more involved example of adding two phasors (in polar form) and returning a polar result.

[bookmark: Example_1_–_Multiply_a_Voltage_by_√3][bookmark: _Toc24551475]Example 1 – Multiply a Voltage by √3
This is a simple mathematical function to demonstrate in detail how to set up a Dynamic Calculator as show by the data flow diagram below.
The input signal is shown below as referenced by the “Measurement Key” which is the preferred manner to reference a signal for this adapter. However, point tag or point GUID can both be used as well.

[image:]
Example 1 – Data Flow

In general, the steps for configuration of the Dynamic Calculator are:
1. Create the output signal that will receive the results of this calculation (e.g., PPA:68)
2. Find the designed input signals (e.g., PPA:7)

3. Create the Action Adapter and build the mathematical expression in the connection string for this adapter. This expression can consist of standard operators, parenthesis, and functions as listed on Page 16.

[image:]Step 1 – Using the Manage – Measurements screen, create a new signal which will receive the results of the calculation. The Point Tag should be descriptive of this signal. Note that Internal and Enabled are both checked.

The “Measurement Key” for this new output signal is created by the openPDC. Go to menu Monitoring – Device Measurement to find the Measurement Key – e.g., PPA-68.

[image:]

[image:]Step 2 – Find the Measurement Key or Point Tag of the input signal to be used in the calculation by browsing through PDC measurements. e.g., The Measurement Key is PPA:7 as shown below.

[image:]Step 3 – Create Dynamic Calculator in menu Adapters - Action Adapters by dropping down to “Dynamic Calculation” under “Type” as shown below and entering in a unique name for this action adapter, e.g., “DCExample1”.

Step 4 – Enter the required the connection string parameters, including the mathematical expression.
All the required parameters for the connection string are shown in red in the parameters list dialog box as shown in the figure below. These required parameters are:
· VariableList
· ExpressionText
· OutputMeasurements
· FramesPerSecond
· LagTime
· LeadTime
VariableList: First assign the input signal (PPA:7) to an arbitrary variable name, e.g., “x”. (The parameters in red in the parameters drop down are required and missing. The ones in bold have been set to values other than the default value.)
[image:]
Note: This step is required when using the Point Tag or GUID to assign a value to the variable. As seen below, Measurement Keys can be used directly in the calculation expression without an assignment to a variable.

ExpressionTest: Enter the f(x), in this case “x” times the square root of three. While value could have been entered as a constant (1.732), the SQRT function was applied.
This expression could also have been entered as “PPA:7*SQRT(3)” without the definition of “x”.

[image:]

[image:]

OutputMeasurements: Assign the created signal with Measurement Key = PPA:68 to the output.
FramesPerSecond: 30 – The calculation periodicity.
LagTime: 3.0 seconds (Wait for up to 3 seconds for all input variables to be initialized by a signal. The lag time for this adapter should be set to match other lag times in the system.)
LeadTime: 1.0 seconds (Since the calculation is always performed on signals with matching timestamps, setting the lead time to a high value allows for large amounts of local clock drift prior to discarding the calculation based on a bad “future” time. A lead time of 1 second is shown in this example. It could have been set to 10 seconds.)

This is the completed Dynamic Calculator for Example 1:
[image:]

Click the Initialize button to start the Calculations.

Confirm operation at menu Monitoring – Device Measurement:
[image:]

[bookmark: Example_2_–_Addition_of_Two_Phasor_Value][bookmark: _Toc24551476]Example 2 – Addition of Two Phasor Values
This example is more involved. Using two phasor values in polar coordinates it computes a resulting phasor, also in polar coordinates.
For this example, Measurement Keys are used to refer to signals. This reference can also be the Point Tag or Point GUID.
The inputs represent four (4) signals:
1. Magnitude and Angle (M1 and A1)
2. Magnitude and Angle (M2 and A2)
To perform this calculation, each phasor is converted to rectangular notation, added, then the result is converted to polar notation as shown below.
With the limitations of the Dynamic Calculator this requires four instances of the Dynamic Calculator adapter as represented by each box below.
1. Add X components
2. Add Y components
3. Compute magnitude of result
4. Compute angle of result

[image:]
This requires
· [bookmark: _Identifying_four_input_adapters_with_M]Identifying four input adapters with Magnitudes and Phase Angles.
· Create two Dynamic Calculator Action Adapters for the X and Y components.
· [bookmark: _Create_two_Dynamic_Calculator_Action_A]Create two Dynamic Calculator Action Adapters for the resulting Magnitude and Phase Angle.

Step 1 - Identify Input Adapters
[image:]

PPA:5 – Bus 1 Magnitude PPA:6 – Bus 1 Angle PPA:7 – Bus 2 Magnitude PPA:8 – Bus 2 Angle

Step 2 – Create an Output for the Dynamic Calculator results in menu Manage - Measurements:
[image:]

[image:]

[image:]

[image:]
[image:]

Notice the list of ID’s for each Output. This will be the IDs used to define where the calculated values will be saved.

Step 3 – Create Dynamic Calculator for X Components
[image:]

This is the completed Dynamic Calculator for the X components:
[image:]

There are several things to note:
· [bookmark: _The_VariableList_has_four_definitions_]The VariableList has four definitions and is contained in { } brackets in the Connection Stream. Between each definition is a semi-colon. This is the required syntax.
· [bookmark: _The_cosine_(and_sine)_function_expects]The cosine (and sine) function expects the angle to be in radians. This requires the PI/180 conversion.
· [bookmark: _There_is_a_new_parameter_on_the_list_–]There is a new parameter on the list – WaitHandleReleaseName. The Magnitude and Angle calculations are dependent on this calculation as well as the Y component calculation. In order to keep the dependent calculation in sync, the Wait Handle was created. When this calculation is completed, the dependent calculations are release to perform their calculations. ‘WaitHandleReleaseName’ is a parameter that is given a name – any non-standard or un-used name – to notify the dependent calculations.

Click the Initialize button to start the Calculations.

Step 4 – Create Dynamic Calculator for Y Components
[image:]

This is the completed Dynamic Calculator for the Y components:
[image:]
Click the Initialize button to start the Calculations.
Step 5 - Create Dynamic Calculator for Magnitude Result
[image:]

This is the completed Dynamic Calculator for the Magnitude results:
[image:]
Note: Notice the ‘waitHandleNames’ parameter. This is how the ‘WaitHandleReleaseName’ is referred to for the required calculations. In usual standard method the required calculation names are separated by a semicolon and enclosed in { } brackets.
Click the Initialize button to start the Calculations.
Step 6 - Create Dynamic Calculator for Angle Result
[image:]

[image:]

[image:]

NOTE: Just as Sin and Cos require radian degrees to properly return values, the a Tan returns in radian and must be converted in order to display degrees.
Click the Initialize button to start the Calculations.

Final Results:
Confirm operation at menu Monitoring – Device Measurement:
[image:]

[bookmark: Available_Functions][bookmark: _Toc24551477]Available Functions
This is a listing of the functions available. This comes directly from the .NETv4 Math Class. Many functions are capable of accepting several number types (overloaded).
· [bookmark: _Abs(x)_-_Returns_the_absolute_value_of]Abs(x) - Returns the absolute value of the specified number, x.
· [bookmark: _Acos(x)_-_Returns_the_angle_whose_cosi]Acos(x) - Returns the angle whose cosine is x.
· [bookmark: _Asin(y)_-_Returns_the_angle_whose_sine]Asin(y) - Returns the angle whose sine is y.
· [bookmark: _Atan(z)_-_Returns_the_angle_whose_tang]Atan(z) - Returns the angle whose tangent is z
· [bookmark: _Atan2(y,_x)_-_Returns_the_angle_whose_]Atan2(y, x) - Returns the angle whose tangent is the quotient of y / x
· [bookmark: _BigMul(x,_y)_-_Produces_the_full_produ]BigMul(x, y) - Produces the full product of two numbers, x and y.
· [bookmark: _Ceiling(x)_-_Returns_the_smallest_inte]Ceiling(x) - Returns the smallest integer value that is greater than or equal to the specified number, x.
· [bookmark: _Cos(a)_-_Returns_the_cosine_of_the_spe]Cos(a) - Returns the cosine of the specified angle, a.
· [bookmark: _Cosh(a)_-_Returns_the_hyperbolic_cosin]Cosh(a) - Returns the hyperbolic cosine of the specified angle, a.
· [bookmark: _DivRem(x,_y,_r)_-_Calculates_the_quoti]DivRem(x, y, r) - Calculates the quotient of two specified number, x and y, and also returns the remainder in an output parameter, r.
· [bookmark: _E_–_Returns_the_constant_e]E – Returns the constant e
· [bookmark: _Exp(x)_-_Returns_e_raised_to_the_speci]Exp(x) - Returns e raised to the specified power, x.
· [bookmark: _Floor(x)_-_Returns_the_largest_integer]Floor(x) - Returns the largest integer less than or equal to the specified number, x.
· [bookmark: _IEEERemainder(x,_y)_-_Returns_the_rema]IEEERemainder(x, y) - Returns the remainder resulting from the division of a specified number, x, by another specified number, y.
· [bookmark: _Log(x)_-_Returns_the_natural_(base_e)_]Log(x) - Returns the natural (base e) logarithm of a specified number, x.
· [bookmark: _Log(x,_b)_-_Returns_the_logarithm_of_a]Log(x, b) - Returns the logarithm of a specified number, x, in a specified base, b.
· [bookmark: _Max(x,_y)_-_Returns_the_larger_of_two_]Max(x, y) - Returns the larger of two numbers.
· [bookmark: _Min(x,_y)_-_Returns_the_smaller_of_two]Min(x, y) - Returns the smaller of two numbers.
· [bookmark: _PI_–_Returns_the_constant_π]PI – Returns the constant π
· [bookmark: _Pow(x,_p)_-_Returns_a_specified_number]Pow(x, p) - Returns a specified number, x, raised to the specified power, p.
· [bookmark: _Round(x)_-_Rounds_a_specified_number,_]Round(x) - Rounds a specified number, x, to the nearest integer value.
· [bookmark: _Round(x,_d)_-_Rounds_a_specified_numbe]Round(x, d) - Rounds a specified number, x, to a specified number of fractional digits, d.
· [bookmark: _Sign(x)_-_Returns_a_value_indicating_t]Sign(x) - Returns a value indicating the sign of x. [-1, 0, 1]
· [bookmark: _Sin(a)_-_Returns_the_sine_of_the_speci]Sin(a) - Returns the sine of the specified angle, a.
· [bookmark: _Sinh(a)_-_Returns_the_hyperbolic_sine_]Sinh(a) - Returns the hyperbolic sine of the specified angle, a.
· [bookmark: _Sqrt(x)_-_Returns_the_square_root_of_a]Sqrt(x) - Returns the square root of a specified number, x.
· [bookmark: _Tan(a)_-_Returns_the_tangent_of_the_sp]Tan(a) - Returns the tangent of the specified angle, a.
· [bookmark: _Tanh(a)_-_Returns_the_hyperbolic_tange]Tanh(a) - Returns the hyperbolic tangent of the specified angle, a.
· [bookmark: _Truncate(x)_-_Returns_the_integral_par]Truncate(x) - Returns the integral part of a specified number, x.

[bookmark: _Toc24551478]Connection Strings
This section goes over the options that can be specified using the connection string for each adapter in the system.
[bookmark: _Toc24551479]ActionAdapterBase
	Key
	Value
	Default
	Description

	framesPerSecond
	int
	
	Determines how many frames are published by the action adapter each second.

	
lagTime
	
double
	
	Defines the maximum time, in seconds, that the action adapter will wait for new measurements to arrive before publishing the frame. The value must be greater than zero, but it can be less than one for subsecond tolerances.

	

leadTime
	

double
	
	Defines the maximum time, in seconds, that the action adapter will tolerate for measurements that arrive with a future timestamp as compared to "real-time" -- a relative term based on the value of useLocalClockAsRealTime. The leadTime value is also applied as the +/- tolerance of the local clock to estimate real-time when useLocalClockAsRealTime is false. The value must be greater than zero, but it can be less than one for subsecond tolerances. If the leadTime is set too short (relative to the accuracy of the local clock), measurements may be unnecessarily discarded. However, if the local clock is very accurate, and accordingly useLocalClockAsRealTime is set true, this number should be very small, e.g., 0.1.

	

useLocalClockAsRealTime
	

bool
	

false
	Indicates whether to use the local clock as real-time or to instead use the timestamp of the latest received measurement. This should only be set to true if the local system clock time is derived by GPS or otherwise very accurately synchronized to real-time. The accuracy of the local clock time relative to GPS-time determines the needed value for the leadTime setting. There is less processing involved when useLocalClockAsRealTime is set true, so having the local system clock synchronized with GPS represents a system optimization.

	

ignoreBadTimestamps
	

bool
	

false
	Determines if bad timestamps (as determined by measurement's timestamp quality) should be ignored when sorting measurements. Setting this property to true forces system to use timestamps as-is without checking quality. If this property is true, it will supersede operation of allowSortsByArrival.

	

allowSortsByArrival
	

bool
	

true
	Indicates whether measurements with bad timestamps should instead be sorted by their arrival time. If this property is true, any incoming measurement with a bad timestamp quality will be sorted according to its arrival time (i.e., real-time). Setting this property to false will cause all measurements with a bad timestamp quality to be discarded. This property will only be considered when ignoreBadTimestamps is false.

	
initializationTimeout
	
int
	
15000
	Defines the maximum time, in milliseconds, adapter will wait during start for initialization to complete. Set to -1 to wait indefinitely.

	Key
	Value
	Default
	Description

	

inputMeasurementKeys
	

string
	

null
	Defines the input measurements for the adapter. The adapter can then determine whether a given measurement was explicitly entered as an input measurement by using the IsInputMeasurement(MeasurementKey) method. If no input measurements are defined, IsInputMeasurement(MeasurementKey) will always return true. IsInputMeasurement(MeasurementKey) is used by the default QueueMeasurementsForProcessing(IEnumerable<IMeasurement>) method so that only input measurements will be processed by the action adapter.

	

outputMeasurements
	

string
	

null
	Defines the output measurements for the adapter. The adapter can access these measurements using the OutputMeasurements property. Adapters that create new measurements should probably clone the output measurements using Measurement.Clone(IMeasurement) and send the clones into the system using OnNewMeasurements(ICollection<IMeasurement>) .

	
minimumMeasurementsToUse
	
int
	# of input measurements
	Defines the number of measurements returned by the TryGetMinimumNeededMeasurements() method which can be called by the user-defined implementation.

	

timeResolution
	

long
	

10000
	Determines the resolution used when sorting the measurements into their respective frames. If frames are configured to have a higher resolution than the measurements, some measurements could end up in the wrong frame due to rounding errors - use this property to assign the maximum resolution of the system frames. The maximum value possible is 10000000. The minimum value possible is 0. See table below for typical resolution values.

	
allowPreemptivePublishing
	
bool
	
true
	Defines the flag that allows system to preemptively publish frames before the lag time expires assuming all expected data have arrived.

	

performTimestampReasonabilityCheck
	

bool
	

true
	Defines flag that determines if timestamp reasonability checks should be performed on incoming measurements (i.e., measurement timestamps are compared to system clock for reasonability using leadTime tolerance). Setting this value to false will make the concentrator use the latest value received as "real-time" without validation; this is not recommended in production since time reported by source devices may be grossly incorrect. For non-production configurations, setting this value to false will allow concentration of historical data.

	
downsamplingMethod
	
string
	
LastReceived
	Defines the downsampling method to use if data is being received at a higher rate than the publishing frame rate defined by framesPerSecond. Can be one of LastReceived, Closest or Filtered - see table below for more detail.

	Key
	Value
	Default
	Description

	

processByReceivedTimestamp
	

bool
	

false
	Defines flag that determines if concentrator should sort measurements by received time. Setting this value to true will make concentrator use the timestamp of measurement reception (typically the measurement creation time), for sorting and publication. This is useful in scenarios where the concentrator will be receiving very large volumes of data but not necessarily in real-time, such as, reading values from a file where you want data to be sorted and processed as fast as possible. Setting this value to true forces useLocalClockAsRealTime to be true and supercedes operation of

	performTimestampReasonabilityCheck.
	
	
	

	

trackPublishedTimestamp
	

bool
	

false
	Defines flag that determines if system should track timestamp of publication for all frames and measurements. Setting this value to true will cause the concentrator to mark the timestamp of publication in each frame's and measurement's PublishedTimestamp property. Since this is extra processing time that may not be needed except in cases of calculating statistics for system performance, this is not enabled by default.

	

maximumPublicationTimeout
	

int
	

milliseconds per frame + 2%
	Defines the maximum frame publication timeout in milliseconds, set to -1 to wait indefinitely. The concentrator automatically defines a precision timer to provide the heatbeat for frame publication, however if the system gets busy the heartbeat signals can be missed. This property defines a maximum wait timeout before reception of the heartbeat signal to make sure frame publications continue to occur in a timely fashion even when a system is under stress. This property is automatically defined as 2% more than the number of milliseconds per frame when the framesPerSecond property is set.

See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of these parameters.
Time resolution value is typically a power of 10 based on the number of ticks per the desired resolution. The following are common resolutions and their respective timeResolution values.

	Resolution
	timeResolution

	Seconds
	10000000

	Milliseconds with slack*
	330000

	Milliseconds
	10000

	Microseconds
	10

	Ticks (100-nanoseconds)
	0

* Use this setting for BPA PDCstreams or other devices that may have more variation in calculated timestamps. Slack value will vary with incoming frame rate, for example: use 330,000 for 30 frames per second, 160,000 for 60 frames per second, 80,000 for 120 frames per second, etc. Actual slack value may need to be more or less depending on the size of the timestamp variation in the incoming device stream.

	Downsample Method
	Description

	LastReceived
	Downsamples to the last measurement received. Use this option if no downsampling is needed or the selected value is not critical. This is the fastest option if the incoming and outgoing frame rates match.

	Closest
	Downsamples to the measurement closest to frame time. This is the typical operation used when performing simple downsampling. This is the fastest option if the incoming frame rate is faster than the outgoing frame rate.

	Filtered
	Downsamples by applying a user-defined value filter* over all received measurements to anti-alias the results. This option will produce the best result but has a processing penalty.

· By default all analogs are downsampled using an average, phase angles are downsampled using a wrapping-angle average and digital values (including status flags) are downsampled by selecting the majority value.
Example: framesPerSecond=30; lagTime=3; leadTime=1; useLocalClockAsRealTime=false; allowSortsByArrival=false; inputMeasurementKeys={FILTER ActiveMeasurements WHERE SignalType='FREQ'}; outputMeasurements={MYSOURCE:15;MYSOURCE:16,-180,360}; minimumMeasurementsToUse=5; timeResolution=10000; allowPreemptivePublishing=true; downsamplingMethod=Closest

[bookmark: _Toc24551480]AdapterBase
This base class is inherited by both InputAdapterBase and OutputAdapterBase.

	Key
	Value
	Default
	Description

| | initializationTimeout | int | 15000 | Defines the maximum time, in milliseconds, adapter will wait during start for initialization to complete. Set to -1 to wait indefinitely. | | inputMeasurementKeys | string | null | Defines the input measurements for the adapter. The adapter can then determine whether a given measurement was explicitly entered as an input measurement by using the IsInputMeasurement(MeasurementKey) method. If no input measurements are defined, IsInputMeasurement(MeasurementKey) will always return true. | | outputMeasurements | string | null | Defines the output measurements for the adapter. The adapter can access these measurements using the OutputMeasurements property. Adapters that create new measurements should probably clone the output measurements using Measurement.Clone(IMeasurement) and send the clones into the system using OnNewMeasurements(ICollection<IMeasurement>) . | | measurementReportingInterval | int | 100000 | Defines the measurement reporting interval used to determined how many measurements should be processed before reporting status. Set to zero to disable status reporting. | | connectOnDemand | bool | false | Defines a flag that determines if adapter should always be started or only be started when measurements being handled or created are demanded by other adapters in the Iaon session. Set to false to always start adapter; otherwise set to true to start adapter only when needed. |
Example: inputMeasurementKeys={FILTER ActiveMeasurements WHERE SignalType = 'FREQ'}; outputMeasurements=
{MYSOURCE:15;MYSOURCE:16,-180,360}; measurementReportingInterval=5000

See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of these parameters.

[bookmark: _Toc24551481]AdoInputAdapter
Connection strings for this adapter also include all the parameters defined for AdapterBase.

	Key
	Value
	Default
	Description

	
tableName
	
string
	
PICOMP
	The name of the database table from which measurements are to be retrieved.

	connectionString
	string
	empty string
	The connection string used to connect to the database.

	Key
	Value
	Default
	Description

	
dataProviderString
	
string
	{AssemblyName={System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089}; ConnectionType=System.Data.Odbc.OdbcConnection; AdapterType=System.Data.Odbc.OdbcDataAdapter}
	The string that describes the type of connection and adapter used to connect to the database.

	
timestampFormat
	
string
	
dd-MMM-yyyy HH:mm:ss.fff
	The format in which the timestamp is stored in the database. The value "null" indicates that the timestamp is stored as a 64-bit integer, in ticks.

	framePerSecond
	int
	30
	The rate at which frames are published from the database to the concentrator.

	
simulateTimestamp
	
bool
	
true
	Indicates whether the adapter should replace the existing timestamps in order to simulate measurements entering the concentrator in real time.

[bookmark: _Toc24551482]AdoOutputAdapter
Connection strings for this adapter also include all the parameters defined for OutputAdapterBase and AdapterBase.

	Key
	Value
	Default
	Description

	tableName
	string
	PICOMP
	The name of the database table to which measurements are to be stored.

	connectionString
	string
	empty string
	The connection string used to connect to the database.

	
dataProviderString
	
string
	{AssemblyName={System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089}; ConnectionType=System.Data.Odbc.OdbcConnection; AdapterType=System.Data.Odbc.OdbcDataAdapter}
	The string that describes the type of connection and adapter used to connect to the database.

	
timestampFormat
	
string
	
dd-MMM-yyyy HH:mm:ss.fff
	The format in which the timestamp is to be stored in the database. The value "null" indicates that the timestamp is to be stored as a 64-bit integer, in ticks.

[bookmark: _Toc24551483]BpaPdcStream.Concentrator
This adapter is used by the OutputStream table in the openPDC database when defining an output stream that uses the BPA PDCstream protocol. When defining an output stream in the OutputStream table, most parameters are set automatically by entering information into the columns of the table. Connection strings for this adapter also include all the parameters defined for PhasorDataConcentratorBase and ActionAdapterBase.

	Key
	Value
	Default
	Description

	iniFileName
	string
	
	Defines the file name of the INI configuration file for the output stream.

Example: iniFileName=TESTSTREAM.ini

[bookmark: _Toc24551484]CalculatedMeasurementBase

Connection strings for this adapter also include all the parameters defined for ActionAdapterBase.

	Key
	Value
	Default
	Description

	
configurationSection
	
string
	
Acronym
	Allows the user to define the section under which adapter settings will be found in the configuration file. If an adapter has configuration file settings, it is up to the person implementing the calculated measurement to handle this.

[bookmark: _Toc24551485]CsvAdapters.CsvInputAdapter
Connection strings for this adapter also include all the parameters defined for AdapterBase.

	Key
	Value
	Default
	Description

	file
	string
	measurements.csv
	The path to the CSV file from which measurements are read.

	inputInterval
	double
	33.333333
	The interval, in milliseconds, at which measurements will be reported to the system.

	measurementsPerInterval
	int
	5
	The number of measurements to be read from the CSV file at each input interval.

	simulateTimestamp
	bool
	false
	Determines whether the adapter should attach a simulated timestamp to the measurements so that it appears to be reporting in real time.

[bookmark: _Toc24551486]CsvAdapters.CsvOutputAdapter
Connection strings for this adapter also include all the parameters defined for OutputAdapterBase and AdapterBase.

	Key
	Value
	Default
	Description

	file
	string
	measurements.csv
	The path to the CSV file from which measurements are read.

[bookmark: _Toc24551487]DataQualityMonitoring.FlatlineTest
Connection strings for this adapter also include all the parameters defined for ActionAdapterBase.

	Key
	Value
	Default
	Description

	minFlatline
	double
	4
	The amount of time, in seconds, that a measurements needs to be reporting the same value before it is considered flatlined.

	warnInterval
	double
	4
	The amount of time, in seconds, between warnings posted to the openPDC Console.

Example: minFlatline=2; warnInterval=10

[bookmark: _Toc24551488]DataQualityMonitoring.RangeTest
Connection strings for this adapter also include all the parameters defined for ActionAdapterbase.

	Key
	Value
	Default
	Description

	lowRange
	double
	
	The low range for values being tested by this adapter. If a measurement that is tested by the adapter reports a value lower than the low range, it will be considered out of range.

	highRange
	double
	
	The high range for values being tested by this adapter. If a measurement that is tested by the adapter reports a value higher than the high range, it will be considered out of range.

	Key
	Value
	Default
	Description

	
signalType
	
string
	
null
	Defines the signal type of the measurements being tested. The lowRange and highRange parameters need not be defined if this parameter is defined (and valid). Valid values are FREQ, VPHM, IPHM, VPHA, and IPHA.

	
timeToPurge
	
double
	
1.0
	Defines how much time should pass, in seconds, before out-of-range measurements should be purged from the system so that memory can be reclaimed and redundant warnings can be prevented.

	warnInterval
	double
	4.0
	The amount of time, in seconds, between warnings posted to the openPDC Console.

The following default low ranges and high ranges are defined for specific signal types (the abbreviation is entered as the signalType parameter).

	Abbreviation
	Signal Type
	Low Range
	High Range

	FREQ
	Frequency
	59.95
	60.05

	VPHM
	Voltage Phasor Magnitude
	475000.0
	525000.0

	IPHM
	Current Phasor Magnitude
	0.0
	3000.0

	VPHA
	Voltage Phasor Angle
	-180.0
	180.0

	IPHA
	Current Phasor Angle
	-180.0
	180.0

Example: lowRange=59.95; highRange=60.05; signalType=FREQ; timeToPurge=5.0; warnInterval=10.0

[bookmark: _Toc24551489]DataQualityMonitoring.TimestampTest
Connection strings for this adapter also include all the parameters defined for FacileActionAdapterBase and AdapterBase.

	Key
	Value
	Default
	Description

	
concentratorName
	
string
	
	Defines which concentrator will be used to determine whether measurements arrived with bad timestamps. The value of this parameter must be the name of an action adapter.

	
timeToPurge
	
double
	
1.0
	Defines how much time should pass, in seconds, before out-of-range measurements should be purged from the system so that memory can be reclaimed and redundant warnings can be prevented.

	warnInterval
	double
	4.0
	The amount of time, in seconds, between warnings posted to the openPDC Console.

Example: concentratorName=TESTSTREAM; timeToPurge=5.0; warnInterval=10.0

[bookmark: _Toc24551490]FacileActionAdapterBase
Connection strings for this adapter also include all the parameters defined for AdapterBase.

	Key
	Value
	Default
	Description

	framesPerSecond
	int
	0
	The rate at which frames are published in frames per second.

Example: framesPerSecond=30

[bookmark: _Toc24551491]HistorianAdapters.InputAdapter

Connection strings for this adapter also include all the parameters defined for AdapterBase.

	Key
	Value
	Default
	Description

	server
	string
	
	The location of the server broadcasting historic data.

	port
	int
	
	The port through which the server is broadcasting data.

	protocol
	string
	
	The protocol used by the server to broadcast the data. Can be either Tcp or Udp.

	initiateconnection
	bool
	
	Indicates whether the adapter needs to connect to the server or if the server will connect to the adapter on the specified port.

Example: protocol=Udp; server=openpdc; port=2004; initiateconnection=true

[bookmark: _Toc24551492]HistorianAdapters.LocalOutputAdapter
This adapter is used by default when defining a local historian in the database. Connection strings for this adapter also include all the parameters defined for OutputAdapterBase and AdapterBase.

	Key
	Value
	Default
	Description

	
instancename
	
string
	
	Determines the name by which certain historian files will be prefixed. If you are using the Historian table in the database to define a local historian, this option is not required and will default to the value in the Historian.Acronym field. Otherwise, it is required. The value will be converted to lowercase before being used.

	
archivepath
	
string
	The openPDC installation directory.
	
Determines the location where the adapter will place the archive files.

	refreshmetadata
	bool
	true
	Determines whether or not to refresh the metadata when the historian is attempting to connect.

Also note that the sourceids parameter is automatically defined when using the Historian table in the database. It will default to the value in the Historian.Acronym field.
Example: instancename=devarchive; archivepath=C:\My Archives; refreshmetadata=false

[bookmark: _Toc24551493]HistorianAdapters.RemoteOutputAdapter
This adapter is used by default when defining a non-local historian in the database. Connection strings for this adapter also include all the parameters defined for OutputAdapterBase and AdapterBase.

	Key
	Value
	Default
	Description

	server
	string
	
	The name or address of the remote historian.

	port
	string
	1003
	The TCP port on which the remote historian is listening.

	payloadaware
	bool
	true
	Indicates whether the payload boundaries are to be preserved during transmission.

	conservebandwidth
	bool
	true
	Determines the packet type to use when sending data to the server.

	outputisforarchive
	bool
	true
	Determines whether the measurements are destined for archival.

	throttletransmission
	bool
	true
	Determines whether to wait for acknowledgment from the historian that the last set of points have been received before attempting to send the next set of points.

	samplespertransmission
	int
	100000
	The maximum number of points to be published to the historian at once.

Example: server=localhost; port=1003; payloadAware=True; conserveBandwidth=True; outputIsForArchive=True; throttleTransmission=True; samplesPerTransmission=100000

[bookmark: _Toc24551494]ICCPExport.FileExporter
Connection strings for this adapter also include all the parameters defined for CalculatedMeasurement and ActionAdapterBase.

	Key
	Value
	Default
	Description

	exportInterval
	int
	
	Defines the time interval, in seconds, between exporting frames of data. This parameter cannot be zero.

	inputMeasurementKeys
	string
	
	At least one input measurement must be specified for this adapter.

	useReferenceAngle
	bool
	
	Determines whether this adapter should use a reference angle when exporting phase angles.

	
referenceAngleMeasurement
	
MeasurementKey
	
	This parameter is not required when useReferenceAngle is set to false. The values of phase angles will be adjusted based on the value of the reference angle before being exported. The specified measurement key must belong to a phase angle measurement.

	companyTagPrefix
	string
	null
	Defines the company acronym used to prefix the measurements' tags. The prefix will be attached to the tag if it is not already present.

	
useNumericQuality
	
bool
	
false
	Determines whether the system should export a textual representation or a numeric representation of the measurement quality.

Example: exportInterval=5; useReferenceAngle=True; referenceAngleMeasurement=DEVARCHIVE:6; companyTagPrefix=TVA; useNumericQuality=True; inputMeasurementKeys={FILTER ActiveMeasurements WHERE Device='SHELBY' AND SignalType='FREQ'}

See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of inputMeasurementKeys.

[bookmark: _Toc24551495]IEEEC37_118.Concentrator
This adapter is used by the OutputStream table in the openPDC database. When defining an output stream in the OutputStream table, most parameters are set automatically by entering information into the columns of the table. Connection strings for this adapter also include all the parameters defined for PhasorDataConcentratorBase and ActionAdapterBase.

	Key
	Value
	Default
	Description

	timeBase
	uint
	16777215
	Defines the resolution of fractional time stamps in IEEE C37.118 configuration frames.

	validateIDCode
	bool
	false
	Defines flag that determines if the IEEE C37.118 concentrator will validate the ID code in command frames before processing.

Example: timeBase=16777215; validateIDCode=true

[bookmark: _Toc24551496]InputAdapterBase
This class does not define any parameters of its own, however it does include all the parameters defined for AdapterBase.

[bookmark: _Toc24551497]MySqlAdapters.MySqlInputAdapter
Connection strings for this adapter also include all the parameters defined for AdapterBase.

	Key
	Value
	Default
	Description

	Key
	Value
	Default
	Description

	inputInterval
	int
	33
	Indicates the amount of time, in milliseconds, that the adapter should pause between retrieving measurements from the database.

	measurementsPerInput
	int
	5
	Determines how many measurements the adapter should retrieve from the database at each input interval.

	fakeTimestamps
	bool
	false
	Indicates whether the adapter should apply fake timestamps to the measurements in order to simulate measurements coming in real time.

	server
	string
	localhost
	The hostname or IP address of the MySQL server. Multiple hosts can be specified separated by & .

	port
	int
	3306
	The port on which the MySQL server is listening for connections.

	
protocol
	
string
	
socket
	Specifies the type of connection to make to the server. Values can be: socket or tcp for a socket connection, pipe for a named pipe connection, unix for a Unix socket connection, memory to use MySQL shared memory.

	database
	string
	mysql
	The name of the database to use intially.

	uid
	string
	
	The MySQL login account being used.

	pwd
	string
	
	The password for the MySQL account being used.

	
encrypt
	
string
	
false
	When true, SSL encryption is used for all data sent between the client and server if the server has a certificate installed. Recognized values are true , false , yes , and no .

	charset
	string
	
	Specifies the character set that should be used to encode all queries sent to the server. Resultsets are still returned in the character set of the data returned.

	default command timeout
	int
	30
	Sets the default value of the command timeout to be used.

	connection timeout
	int
	15
	The length of time (in seconds) to wait for a connection to the server before terminating the attempt and generating an error.

	shared memory name
	string
	MYSQL
	The name of the shared memory object to use for communication if the connection protocol is set to memory.

[bookmark: _Toc24551498]MySqlAdapters.MySqlOutputAdapter
Connection strings for this adapter also include all the parameters defined for OutputAdapterBase and AdapterBase.

	Key
	Value
	Default
	Description

	server
	string
	localhost
	The hostname or IP address of the MySQL server. Multiple hosts can be specified separated by
& .

	port
	int
	3306
	The port on which the MySQL server is listening for connections.

	
protocol
	
string
	
socket
	Specifies the type of connection to make to the server. Values can be: socket or tcp for a socket connection, pipe for a named pipe connection, unix for a Unix socket connection, memory to use MySQL shared memory.

	database
	string
	mysql
	The name of the database to use intially.

	uid
	string
	
	The MySQL login account being used.

	pwd
	string
	
	The password for the MySQL account being used.

	Key
	Value
	Default
	Description

	encrypt
	string
	false
	When true, SSL encryption is used for all data sent between the client and server if the server has a certificate installed. Recognized values are true , false , yes , and no .

	charset
	string
	
	Specifies the character set that should be used to encode all queries sent to the server. Resultsets are still returned in the character set of the data returned.

	default command timeout
	
int
	
30
	
Sets the default value of the command timeout to be used.

	connection timeout
	int
	15
	The length of time (in seconds) to wait for a connection to the server before terminating the attempt and generating an error.

	shared memory name
	
string
	
MYSQL
	The name of the shared memory object to use for communication if the connection protocol is set to memory.

[bookmark: _Toc24551499]OutputAdapterBase
Connection strings for this class also include all the parameters defined for AdapterBase.

	Key
	Value
	Default
	Description

	
sourceids
	
string
	
null
	A comma-separated list of sources that defines which measurements are to be processed by the output adapter. The source of a measurement is usually defined as the acronym of the historian which is archiving that measurement.

Example: sourceids=DEVARCHIVE,OTHERSOURCE

[bookmark: _Toc24551500]PhasorDataConcentratorBase
Connection strings for this adapter also include all the parameters defined for ActionAdapterBase.

	Key
	Value
	Default
	Description

	IDCode
	ushort
	
	Defines an identification code for the concentrator.

	dataChannel
	string
	null
	Defines a connection string for a UDP data stream.

	commandChannel
	string
	null
	Defines a connection string for a TCP data stream that can be used to send commands to the concentrator.

	
autoPublishConfigFrame
	
bool
	true if commandChannel is undefined; false otherwise
	Indicates whether the concentrator should publish the configuration frame automatically or if it should wait for the command to be given on the command channel.

	
autoStartDataChannel)
	
bool
	
true
	Indicates whether the data channel should be started automatically when the adapter is started or if it should wait to be explicitly started by the user.

	nominalFrequency
	int
	60
	Determines the line frequency to use when transmitting the concentrated measurements. Possible values are 50 and 60.

	
dataFormat
	
string
	
FloatingPoint
	Defines the default data format of the concentrator if no other format is specified for the output device. Can be either FixedInteger or FloatingPoint.

	Key
	Value
	Default
	Description

	
coordinateFormat
	
string
	
Polar
	Defines the default coordinate format of the concentrator if no other format is specified for the output device. Can be either Rectangular or Polar.

	
currentScalingValue
	
uint
	
2423
	Defines the default current value scaling factor to apply if the dataFormat is set to FixedInteger and no other scaling value is specified for the output device.

	
voltageScalingValue
	
uint
	
2725785
	Defines the default voltage value scaling factor to apply if the dataFormat is set to FixedInteger and no other scaling value is specified for the output device.

	
analogScalingValue
	
uint
	
1373291
	Defines the default analog value scaling factor to apply if the dataFormat is set to FixedInteger and no other scaling value is specified for the output device.

	

digitalMaskValue
	

uint
	

0xFFFF0000
	Defines the default digital mask value made available in configuration frames for use with digital values published by the concentrator if no other mask value is specified for the output device. In IEEE C37.118 configuration frames this value represents two mask words for use with digital status values where the low word represents the the normal status of the digital inputs and the high word represents the valid inputs.

	
processDataValidFlag
	
bool
	
true
	Defines flag that determines if the data valid flag assignments should be processed during frame publication. In cases where client applications ignore the data validity flag, setting this flag to false will provide a slight processing optimization, especially useful on very large data streams.

At least one of either dataChannel or commandChannel must be specified. If dataChannel is not specified, the command channel will be used to transmit data from the concentrator and issue commands to the concentrator. Otherwise, the data channel is used to broadcast and the command channel, if specified, is used to issue commands. The data channel and command channel each have their own connection string parameters. Check the example to see how to enter them.
dataChannel

	Key
	Value
	Default
	Description

	port
	int
	
	Defines the local port for the data channel. A value of -1 tells it not to use a local port. A value of 0 tells it to use any port.

	clients
	string
	
	Defines a comma-separated list of machines to which the data is sent.

	interface
	string
	empty string
	Defines the local interface through which the UDP connection is made.

commandChannel

	Key
	Value
	Default
	Description

	port
	int
	
	Defines the local port on which the concentrator is listening for commands.

	interface
	string
	empty string
	Defines the local interface through which the TCP connection is made.

Example: IDCode=235; dataChannel={port=-1; clients=localhost:8800; interface=0.0.0.0}; commandChannel={port=8900; interface=0.0.0.0}; autoPublishConfigFrame=false; autoStartDataChannel=true; nominalFrequency=60; dataFormat=FloatingPoint; coordinateFormat=Polar

[bookmark: _Toc24551501]PhasorMeasurementMapper

PhasorMeasurementMapper is used by the Device table in the openPDC database. When defining a device in the Device table, most parameters are set automatically by entering information into the columns of the device table. Connection strings for this adapter also include all the parameters defined for AdapterBase.

	Key
	Value
	Default
	Description

	isConcentrator
	bool
	false
	Indicates whether or not the device represented by this PhasorMeasurementMapper is a concentrator.

	accessID
	ushort
	1
	The Access ID or Device ID of the device represented by this PhasorMeasurementMapper.

	

forceLabelMapping
	

bool
	

false
	Forces the preferred use of the device label over the device ID code when mapping devices from a data frame to the local configuration. Enabling this option is less optimal than using a numeric ID code for mapping, but is useful when local configuration ID code does not match that of device configuration.
Label lookups are case-insensitive.

	

primaryDataSource
	

string
	

null
	Specifies the acronym of a device using the Gateway Exchange Protocol (GEP) that will be used as the primary data source for this device. When defined, this connection will only activate as a backup connection when the primary GEP connection goes offline - when GEP connection comes back online, this device connection will disconnect. For example, this could be used as a direct backup connection to a substation PMU whose primary data feed is provided through a GEP style connection to a substation PDC connected to the PMU - this connection would only be enabled when the PDC's GEP connection was offline.

	

sharedMapping
	

string
	

null
	Specifies the acronym of another device which will be used as the configuration source for this device.
When defined, this device is assumed to be a redundant connection to a source device (e.g., PDC or PMU). Enabling the shared mapping allows a device to be defined with only connection information and no direct configuration; the device "assumes" the configuration of the specified device acronym. In this way the primary device configuration can be maintained once and other multiple redundant connections, as many as needed, can be defined associated with same single configuration. Redundant data will pass through the system and be handled via concentrator downsampling method.

	
phasorProtocol
	
PhasorProtocol
	
IeeeC37_118V1
	Defines the phasor protocol used by the device. The value can be one of IeeeC37_118V1, IeeeC37_118D6, Ieee1344, BpaPdcStream, FNet, SelFastMessage, or Macrodyne.

	transportProtocol
	TransportProtocol
	Tcp
	Defines the protocol used by the device to send its data. The value can be one of Tcp, Udp, Serial, or File.

	Key
	Value
	Default
	Description

	commandChannel
	string
	not defined
	If defined, the value of this parameter is the connection string of the command channel.

	
timeZone
	
string
	
UTC
	ID of the time zone for time as reported by device used to offset time back to UTC. See typical time zones for possible IDs.

	
timeAdjustmentTicks
	
long
	
0
	Allows for manual high-resolution +/- adjustment of the frame timestamps, in ticks, if necessary. One tick
= 100 nanoseconds, one millisecond = 10000 ticks.

	
autoStartDataParsingSequence
	
bool
	
true
	Defines flag to automatically send the ConfigFrame2 and EnableRealTimeData command frames used to start a typical data parsing sequence.

	
skipDisableRealTimeData
	
bool
	
false
	Defines flag to skip automatic disabling of the real- time data stream on shutdown or startup. Useful when using UDP multicast with several subscribed clients.

	
executeParseOnSeparateThread*
	
bool
	
false
	Defines flag that allows frame parsing to be executed on a separate thread (i.e., other than communications thread). Rarely used unless data frames are very large.

	
simulateTimestamp
	
bool
	true if transportProtocol
= File; false otherwise
	
Defines flag indicating whether or not to inject local system time (UTC) into parsed data frames.

	
configurationFile
	
string
	
null
	If defined, loads serialized configuration from specified filename before connection is established - useful when receiving UDP only data without the ability to receive a config frame.

	
dataLossInterval
	
double
	
5.0
	Defines the amount of time, in seconds, that the PhasorMeasurementMapper should wait before reconnecting to a device which has stopped sending data.

	
allowUseOfCachedConfiguration
	
bool
	
true
	Defines flag that determines if use of cached configuration during initial connection is allowed when a configuration has not been received within the "dataLossInterval".

	
allowedParsingExceptions
	
int
	
10
	Defines the number of parsing exceptions allowed during "parsingExceptionWindow" before connection is reset.

	parsingExceptionWindow
	double
	5.0
	Defines time duration, in seconds, to monitor parsing exceptions.

	
delayedConnectionInterval
	
double
	
1.5
	Defines the delay, in seconds, before connecting or reconnecting to a device. Set to zero for minimum delay (1 millisecond). One to two second delay recommended for new device turn-up.

commandChannel connection string parameters (also includes transport protocol specific parameters)

	Key
	Value
	Default
	Description

	protocol
	TransportProtocol
	
	Defines the protocol used by the device to receive commands. The value can be one of Tcp, Serial, or File.

	islistener
	bool
	false
	Indicates whether to use a TCP server or a TCP client for the command channel.

Example: isConcentrator=false; accessID=235; timeZone=UTC; timeAdjustmentTicks=10000000; dataLossInterval=20.0; phasorProtocol=Ieee1344; transportProtocol=Udp; commandChannel={protocol=Tcp; islistener=true}

Additional parameters for PhasorMeasurementMapper if phasorProtocol=BpaPdcStream
	Key
	Value
	Default
	Description

	iniFileName
	string
	
	The value of this parameter is the path to the INI file which contains settings for the device.

	refreshConfigFileOnChange
	bool
	true
	Determines whether the INI configuration file is automatically reloaded when it has changed on disk.

	parseWordCountFromByte
	bool
	false
	Determines whether to interpret the the word count in the packet header from a byte instead of a word.

Example: phasorProtocol=BpaPdcStream; iniFileName=TESTSTREAM.ini; refreshConfigFileOnChange=true; parseWordCountFromByte=true
if phasorProtocol=FNet

	Key
	Value
	Default
	Description

	
timeOffset
	
long
	
110000000
	F-NET devices normally report time in 11 seconds past real-time, this property defines the offset for this this artificial delay. Note that the parameter value is in ticks to allow a very high-resolution offset; 1 second = 10,000,000 ticks.

	stationName
	string
	F-Net Unit
	Defines the station name for the F-Net device.

	frameRate
	ushort
	10
	The configured frame rate for the F-Net device.

	nominalFrequency
	int
	60
	The nominal line frequency of the F-Net device. The value can be either 50 or 60.

Example: phasorProtocol=FNet; timeOffset=50000000; stationName=Poppy; frameRate=15; nominalFrequency=60
if phasorProtocol=SelFastMessage

	Key
	Value
	Default
	Description

	

messagePeriod
	

MessagePeriod
	

DefaultRate
	The value can be one of DefaultRate (20 messages per second), TwentyPerSecond, TenPerSecond, FivePerSecond, FourPerSecond, TwoPerSecond, OnePerSecond, ThirtyPerMinute, FifteenPerMinute, TwelvePerMinute, TenPerMinute, SixPerMinute, FourPerMinute, ThreePerMinute, TwoPerMinute, or OnePerMinute.

Example: phasorProtocol=SelFastMessage; messagePeriod=TwoPerSecond
*if transportProtocol=File

	Key
	Value
	Default
	Description

	definedFrameRate
	double
	30.0
	Defines the desired frame rate to use for maintaining captured frame replay timing.

	Key
	Value
	Default
	Description

	
useHighResolutionInputTimer
	
bool
	
true
	Defines flag that determines if a high-resolution precision timer should be used for file based input. Useful when input frames need be accurately time- aligned to the local clock to better simulate an input device and calculate downstream latencies.

	autoRepeatFile
	bool
	true
	Defines flag that determines if a file used for replaying data should be restarted at the beginning once it has been completed.

Example: transportProtocol=File; file=Sample1344.PmuCapture; definedFrameRate=60; simulateTimestamp=false; autoRepeatFile=false

[bookmark: _Toc24551502]PowerCalculations.AverageFrequency
Connection strings for this adapter also include all the parameters defined for CalculatedMeasurement and ActionAdapterBase.

	Key
	Value
	Default
	Description

	inputMeasurementKeys
	string
	
	All non-frequency measurements will be ignored by this adapter. At least one frequency must be defined in the inputMeasurementKeys parameter.

	
outputMeasurements
	
string
	
	At least three measurements must be defined by this parameter. The first three output measurements represent the average, maximum, and minimum of the input frequencies respectively. Additional output measurements will be ignored.

Example: inputMeasurementKeys={FILTER ActiveMeasurements WHERE SignalType = 'FREQ'}; outputMeasurements={AVERAGE:1; AVERAGE:2; AVERAGE:3}

See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of these parameters.

[bookmark: _Toc24551503]PowerCalculations.EventDetection.FrequencyExcursion
Connection strings for this adapter also include all the parameters defined for CalculatedMeasurement and ActionAdapterBase.

	Key
	Value
	Default
	Description

	
inputMeasurementKeys
	
string
	
	All non-frequency measurements will be ignored by this adapter. At least one frequency must be defined in the inputMeasurementKeys parameter. Additionally, there must be at least as many input frequencies defined as the value defined for minimumValidChannels.

	
outputMeasurements
	
string
	
	At least four measurements must be defined by this parameter. The first four output measurements represent the Warning Signal Status, Frequency Delta, Type of Excursion, and Estimated Size respectively.
Additional output measurements will be ignored.

	estimateTriggerThreshold
	double
	.0256
	Defines the threshold of the estimation trigger.

	analysisWindowSize
	int
	4 * framesPerSecond
	Defines the sample size of the analysis window.

	analysisInterval
	int
	framesPerSecond
	Defines the frame interval between two adjacent frequency tests.

	consecutiveDetections
	int
	2
	Defines the number of consecutive excursions to be detected before triggering the alarm.

	minimumValidChannels
	int
	3
	Defines the minimum number of valid channels for conducting the frequency tests.

	Key
	Value
	Default
	Description

	powerEstimateRatio
	double
	19530.0
	Defines the ratio of the total amount of generator (load) trip over the frequency excursion.

	minimumAlarmInterval
	int
	20
	Defines the minimum duration between alarms in seconds.

Example: inputMeasurementKeys={FILTER ActiveMeasurements WHERE SignalType = 'FREQ'}; outputMeasurements={EXCURSION:1; EXCURSION:2; EXCURSION:3; EXCURSION:4}; estimateTriggerThreshold=.0256; analysisWindowSize=150; analysisInterval=15; consecutiveDetections=3; minimumValidChannels=5; powerEstimateRatio=19530.0; minimumAlarmInterval=10
See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of these parameters.

[bookmark: _Toc24551504]PowerCalculations.EventDetection.LossOfField
Connection strings for this adapter also include all the parameters defined for CalculatedMeasurement and ActionAdapterBase.

	Key
	Value
	Default
	Description

	
inputMeasurementKeys
	
string
	
	All non-phasor measurements will be ignored by this adapter. At least one each of voltage magnitude, voltage angle, current magnitude, and current angle must be specified as input measurements to this adapter. If more than one of any of these is specified, only the first one will be used.

	
outputMeasurements
	
string
	
	At least four measurements must be defined by this parameter. The first four output measurements represent the Warning Signal Status, Real Power, Reactive Power, and Q-Area Value respectively. Additional output measurements will be ignored.

	
pSet
	
double
	
-600
	This is the pre-set value for MW power-flow from bus A to bus B. Usually the absolute value of pSet is smaller than the absolute value of power-flow in normal condition.

	
qSet
	
double
	
200
	This is the pre-set value for MVar flow from bus A to bus B. Usually the absolute value of qSet is larger than the absolute value of Mvar flow in normal condition.

	
qAreaSet
	
double
	
500
	This the pre-set threshold for qArea. qArea is the accumulation of excessive Mvar flow if abs(P) < abs(pSet) and abs(Q) > abs(qSet). (P is the current MW power-flow and Q is the current Mvar flow)

	voltageThreshold
	double
	475000
	This is the pre-set voltage threshold for the bus, on which the loss-of-field is monitored.

	analysisInterval
	int
	framesPerSecond
	Defines the frame interval between two adjacent phasor tests.

Example: inputMeasurementKeys={DEVARCHIVE:5; DEVARCHIVE:6; DEVARCHIVE:9; DEVARCHIVE:10}; outputMeasurements={LOF:1; LOF:2; LOF:3; LOF:4}; pSet=-500; qSet=300; qAreaSet=600; voltageThreshold=475000; analysisInterval=15

See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of these parameters.

[bookmark: _Toc24551505]PowerCalculations.PowerStability
Connection strings for this adapter also include all the parameters defined for CalculatedMeasurement and ActionAdapterBase.

	Key
	Value
	Default
	Description

	Key
	Value
	Default
	Description

	

inputMeasurementKeys
	

string
	
	All non-phasor measurements will be ignored by this adapter. At least one each of voltage magnitude, voltage angle, current magnitude, and current angle must be specified as input measurements to this adapter. Additionally, the number of voltage angles must match the number of voltage magnitudes and the number of current magnitudes must match the number of current angles. The definition order of angles and magnitudes must match so that the angle/magnitude pairs can be matched up appropriately.

	
outputMeasurements
	
string
	
	At least two measurements must be defined by this parameter. The first two output measurements represent the Calculated Power and the Standard Deviation of Power respectively. Additional output measurements will be ignored.

	sampleSize
	int
	15
	Defines the data sample size to monitor in seconds.

	energizedThreshold
	double
	58000.0
	Defines the energized bus threshold in volts. The recommended value is 20% of the nominal line-to-neutral voltage.

Example: inputMeasurementKeys={DEVARCHIVE:6; DEVARCHIVE:5; DEVARCHIVE:8; DEVARCHIVE:7; DEVARCHIVE:10; DEVARCHIVE:9; DEVARCHIVE:12; DEVARCHIVE:11; DEVARCHIVE:14; DEVARCHIVE:13}; outputMeasurements={POWER:1; POWER:2}; sampleSize=20;
energizedThreshold=58000.0

Note: Ordering by PhasorID allows angle and magnitude measurements to be sorted together so they can be identified as a pair.
Example2: inputMeasurementKeys={FILTER ActiveMeasurements WHERE SignalType LIKE '*PH*' AND Device = 'SHELBY' ORDER BY PhasorID}; outputMeasurements={POWER:1; POWER:2}; sampleSize=20; energizedThreshold=58000.0

See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of these parameters.

[bookmark: _Toc24551506]PowerCalculations.ReferenceAngle
Connection strings for this adapter also include all the parameters defined for CalculatedMeasurement and ActionAdapterBase.

	Key
	Value
	Default
	Description

	
inputMeasurementKeys
	
string
	
	All non-phase angle measurements will be ignored by this adapter. At least one phase angle must be specified as an input measurement to this adapter. Additionally, phase types must not be mixed; only voltage angles or only current angles should be specified.

	
outputMeasurements
	
string
	
	At least one measurement must be defined by this parameter. The first measurement represents the Calculated Reference Angle value. Additional output measurements will be ignored.

Example: inputMeasurementKeys={FILTER ActiveMeasurements WHERE SignalType = 'IPHA'}; outputMeasurements={REF_IPHA:1}
See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of these parameters.

[bookmark: _Toc24551507]PowerCalculations.ReferenceMagnitude
Connection strings for this adapter also include all the parameters defined for CalculatedMeasurement and ActionAdapterBase.

	Key
	Value
	Default
	Description

	Key
	Value
	Default
	Description

	
inputMeasurementKeys
	
string
	
	All non-phase magnitude measurements will be ignored by this adapter. At least one phase magnitude must be specified as an input measurement to this adapter.
Additionally, phase types must not be mixed; only voltage magnitudes or only voltage angles should be specified.

	
outputMeasurements
	
string
	
	At least one measurement must be defined by this parameter. The first measurement represents the Calculated Reference Magnitude value. Additional output measurements will be ignored.

Example: inputMeasurementKeys={FILTER ActiveMeasurements WHERE SignalType = 'IPHM'}; outputMeasurements={REF_IPHM:1}
See Syntax for inputMeasurementKeys and outputMeasurements for help with the syntax of these parameters.

[bookmark: _Toc24551508]Syntax for inputMeasurementKeys and outputMeasurements
The syntax for inputMeasurementKeys and outputMeasurements is either:
Filter syntax: FILTER <TableName> WHERE <Expression> [ORDER BY <SortField>]
-or-
Field syntax: <Source>:<ID>[,<Adder>,<Multiplier>];
The syntax for both the input and output parameters is identical except that outputMeasurements allows the defintion of an adder and a multiplier using the field syntax whereas inputMeasurementKeys does not. In the following examples, the acronym of the historian archiving the measurements is called DEVARCHIVE.
1. inputMeasurementKeys={DEVARCHIVE:1;DEVARCHIVE:2;DEVARCHIVE:5;DEVARCHIVE:12}
2. outputMeasurements={SOURCENAME:6,5,9;SOURCENAME:18,59.5,0.1;SOURCENAME:20}
3. inputMeasurementKeys={FILTER ActiveMeasurements WHERE Device = 'SHELBY' AND SignalType = 'VPHM'}
4. inputMeasurementKeys={FILTER ActiveMeasurements WHERE SignalType LIKE '*PH*' AND Device = 'SHELBY' ORDER BY PhasorID}
In example 1, we define four input measurements corresponding to the measurement keys DEVARCHIVE:1 , DEVARCHIVE:2 , DEVARCHIVE:5 , and DEVARCHIVE:12 . The IsInputMeasurement(MeasurementKey) method will only return true if the MeasurementKey argument matches one of those four keys. Had we used outputMeasurements instead of inputMeasurementKeys , it would have created four measurements with the default adder and multiplier, 0 and 1 respectively.
Example 2 syntax only applies to the outputMeasurements parameter and defines the adder and multiplier of the measurements in addition to the measurement key. In this example, we define three output measurements with the following keys: SOURCENAME:6 , SOURCENAME:18 , and SOURCENAME:20 . The adder for each is 5, 59.5, and 0 respectively. The multiplier for each is 9, 0.1, and 1 respectively.
In example 3, we use a statement with SQL-like syntax in order to determine which measurements are defined as the input measurements. The ConfigurationEntity table defines the table names you can use in place of "ActiveMeasurements".
ConfigurationEntity.SourceName defines the name of the table or view in the database and ConfigurationEntity.RuntimeName defines the name used in place of "ActiveMeasurements". When using the inputMeasurementKeys parameter, the system uses only the "ID" column of the given table or view in order to determine the MeasurementKey of each of the input measurements. When using the outputMeasurements parameter, the system uses the "ID", "PointTag", "Adder", and "Multiplier" columns to create the output measurements.
In example 4, we apply a "LIKE" expression to get any signal type that has "PH" as the middle two letters (i.e., IPHM, VPHM, IPHA or VPHA
-or- current phasor magnitude, voltage phasor magnitude, current phasor angle or voltage phasor angle respectively). Additonally we apply an "ORDER BY" expression so that the selected results are ordered by their unique phasor ID, by doing this all magnitude and phase angles associated with the same phasor will be sorted side-by-side allowing the consumer to automatically know which angle and magnitude vector component pairs go together simply by their ordered grouping.
Click here for more help on proper and allowed syntax for expressions.

[bookmark: _Toc24551509]Typical Time Zones

	ID
	Display Name

	UTC
	Universal Coordinated Time (GMT without daylight savings adjustments)

	GMT Standard Time
	(GMT) Greenwich Mean Time : Dublin, Edinburgh, Lisbon, London

	Greenwich Standard Time
	(GMT) Casablanca, Monrovia, Reykjavik<

	W. Europe Standard Time
	(GMT+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

	Central Europe Standard Time
	(GMT+01:00) Belgrade, Bratislava, Budapest, Ljubljana, Prague

	Romance Standard Time
	(GMT+01:00) Brussels, Copenhagen, Madrid, Paris

	Central European Standard Time
	(GMT+01:00) Sarajevo, Skopje, Warsaw, Zagreb

	W. Central Africa Standard Time
	(GMT+01:00) West Central Africa

	Jordan Standard Time
	(GMT+02:00) Amman

	GTB Standard Time
	(GMT+02:00) Athens, Bucharest, Istanbul

	Middle East Standard Time
	(GMT+02:00) Beirut

	Egypt Standard Time
	(GMT+02:00) Cairo

	South Africa Standard Time
	(GMT+02:00) Harare, Pretoria

	FLE Standard Time
	(GMT+02:00) Helsinki, Kyiv, Riga, Sofia, Tallinn, Vilnius

	Israel Standard Time
	(GMT+02:00) Jerusalem

	E. Europe Standard Time
	(GMT+02:00) Minsk

	Namibia Standard Time
	(GMT+02:00) Windhoek

	Arabic Standard Time
	(GMT+03:00) Baghdad

	Arab Standard Time
	(GMT+03:00) Kuwait, Riyadh

	Russian Standard Time
	(GMT+03:00) Moscow, St. Petersburg, Volgograd

	E. Africa Standard Time
	(GMT+03:00) Nairobi

	Georgian Standard Time
	(GMT+03:00) Tbilisi

	Iran Standard Time
	(GMT+03:30) Tehran

	Arabian Standard Time
	(GMT+04:00) Abu Dhabi, Muscat

	Azerbaijan Standard Time
	(GMT+04:00) Baku

	Caucasus Standard Time
	(GMT+04:00) Caucasus Standard Time

	Armenian Standard Time
	(GMT+04:00) Yerevan

	Afghanistan Standard Time
	(GMT+04:30) Kabul

	Ekaterinburg Standard Time
	(GMT+05:00) Ekaterinburg

	West Asia Standard Time
	(GMT+05:00) Islamabad, Karachi, Tashkent

	India Standard Time
	(GMT+05:30) Chennai, Kolkata, Mumbai, New Delhi

	Sri Lanka Standard Time
	(GMT+05:30) Sri Jayawardenepura

	Nepal Standard Time
	(GMT+05:45) Kathmandu

	ID
	Display Name

	N. Central Asia Standard Time
	(GMT+06:00) Almaty, Novosibirsk

	Central Asia Standard Time
	(GMT+06:00) Astana, Dhaka

	Myanmar Standard Time
	(GMT+06:30) Yangon (Rangoon)

	SE Asia Standard Time
	(GMT+07:00) Bangkok, Hanoi, Jakarta

	North Asia Standard Time
	(GMT+07:00) Krasnoyarsk

	China Standard Time
	(GMT+08:00) Beijing, Chongqing, Hong Kong, Urumqi

	North Asia East Standard Time
	(GMT+08:00) Irkutsk, Ulaan Bataar

	Singapore Standard Time
	(GMT+08:00) Kuala Lumpur, Singapore

	W. Australia Standard Time
	(GMT+08:00) Perth

	Taipei Standard Time
	(GMT+08:00) Taipei

	Tokyo Standard Time
	(GMT+09:00) Osaka, Sapporo, Tokyo

	Korea Standard Time
	(GMT+09:00) Seoul

	Yakutsk Standard Time
	(GMT+09:00) Yakutsk

	Cen. Australia Standard Time
	(GMT+09:30) Adelaide

	AUS Central Standard Time
	(GMT+09:30) Darwin

	E. Australia Standard Time
	(GMT+10:00) Brisbane

	AUS Eastern Standard Time
	(GMT+10:00) Canberra, Melbourne, Sydney

	West Pacific Standard Time
	(GMT+10:00) Guam, Port Moresby

	Tasmania Standard Time
	(GMT+10:00) Hobart

	Vladivostok Standard Time
	(GMT+10:00) Vladivostok

	Central Pacific Standard Time
	(GMT+11:00) Magadan, Solomon Is., New Caledonia

	New Zealand Standard Time
	(GMT+12:00) Auckland, Wellington

	Fiji Standard Time
	(GMT+12:00) Fiji, Kamchatka, Marshall Is.

	Tonga Standard Time + (GMT+13:00) Nuku'alofa
	

	Azores Standard Time
	(GMT-01:00) Azores

	Cape Verde Standard Time
	(GMT-01:00) Cape Verde Is.

	Mid-Atlantic Standard Time
	(GMT-02:00) Mid-Atlantic

	E. South America Standard Time
	(GMT-03:00) Brasilia

	SA Eastern Standard Time
	(GMT-03:00) Buenos Aires, Georgetown

	Greenland Standard Time
	(GMT-03:00) Greenland

	Montevideo Standard Time
	(GMT-03:00) Montevideo

	Newfoundland Standard Time
	(GMT-03:30) Newfoundland

	Atlantic Standard Time
	(GMT-04:00) Atlantic Time (Canada)

	SA Western Standard Time
	(GMT-04:00) La Paz

	ID
	Display Name

	Central Brazilian Standard Time
	(GMT-04:00) Manaus

	Pacific SA Standard Time
	(GMT-04:00) Santiago

	Venezuela Standard Time
	(GMT-04:30) Caracas

	SA Pacific Standard Time
	(GMT-05:00) Bogota, Lima, Quito, Rio Branco

	Eastern Standard Time
	(GMT-05:00) Eastern Time (US & Canada)

	US Eastern Standard Time
	(GMT-05:00) Indiana (East)

	Central America Standard Time
	(GMT-06:00) Central America

	Central Standard Time
	(GMT-06:00) Central Time (US & Canada)

	Central Standard Time (Mexico)
	(GMT-06:00) Guadalajara, Mexico City, Monterrey - New

	Mexico Standard Time
	(GMT-06:00) Guadalajara, Mexico City, Monterrey - Old

	Canada Central Standard Time
	(GMT-06:00) Saskatchewan

	US Mountain Standard Time
	(GMT-07:00) Arizona

	Mountain Standard Time (Mexico)
	(GMT-07:00) Chihuahua, La Paz, Mazatlan - New

	Mexico Standard Time
	(GMT-07:00) Chihuahua, La Paz, Mazatlan - Old

	Mountain Standard Time
	(GMT-07:00) Mountain Time (US & Canada)

	Pacific Standard Time
	(GMT-08:00) Pacific Time (US & Canada)

	Pacific Standard Time (Mexico)
	(GMT-08:00) Tijuana, Baja California

	Alaskan Standard Time
	(GMT-09:00) Alaska

	Hawaiian Standard Time
	(GMT-10:00) Hawaii

	Samoa Standard Time
	(GMT-11:00) Midway Island, Samoa

	Dateline Standard Time
	(GMT-12:00) International Date Line West

[bookmark: _Toc24551510]Command Line Functions for Improved Diagnostics

The console commands are a powerful set of command line utilities that are extremely useful when troubleshooting errors and issues with the openPDC.
The help command can be used to see a list of all commands that can be entered into the console

Command	Description
-------------------- ---
Clients	Displays list of clients connected to the service
Settings	Displays queryable service settings from config file
Processes	Displays list of service or system processes
Schedules	Displays list of process schedules defined in the service History	Displays list of requests received from the clients
Help	Displays list of commands supported by the service
Status	Displays the current service status
Start	Start a service or system process
Abort	Aborts a service or system process ReloadCryptoCache	Reloads local cryptography cache UpdateSettings	Updates service setting in the config file ReloadSettings	Reloads services settings from the config file Reschedule	Reschedules a process defined in the service Unschedule	Unschedules a process defined in the service SaveSchedules	Saves process schedules to the config file LoadSchedules	Loads process schedules from the config file Version	Displays current service version
Time	Displays current system time
Health	Displays a report of resource utilization for the service ResetHealthMonitor	Resets the system resource utilization monitor
List	Displays status for specified adapter or collection
Connect	Connects (or starts) specified adapter
Disconnect	Disconnects (or stops) specified adapter
Invoke	Invokes a command for specified adapter ListCommands	Displays possible commands for specified adapter Initialize	Initializes specified adapter or collection ReloadConfig	Manually reloads the system configuration UpdateConfigFile	Updates an option in the configuration file
Authenticate	Authenticates network shares for health and status exports Restart	Attempts to restart the host service
RefreshRoutes	Spawns request to recalculate routing tables TemporalSupport	Determines if any adapters support temporal processing

[bookmark: Command:_List_/i][bookmark: _Toc24551511]Command: List /i
LIST:Success - System Uptime: 7 Hours 17 Minutes 9 Seconds
>> All defined adapters in Input Adapter Collection (4 total) ID	Name
---------- --
2	SHELBY
Up for 7.28 hours, 0 errors 08/18/2012 02:42:07.433 27.95 fps
8 PPAREADER
Not currently publishing data
9 SHELBY2
Up for 7.28 hours, 0 errors 08/18/2012 02:42:07.433 28.15 fps
10 SHELBY3
Up for 19.4 minutes, 0 errors 08/18/2012 02:42:07.433 28.35 fps

[bookmark: Command:_List_/a][bookmark: _Toc24551512]Command: List /a

LIST:Success(/a) - System Uptime: 7 Hours 43 Minutes 56 Seconds
>> All defined adapters in Action Adapter Collection (6 total) ID	Name
---------- --
0	PHASOR!SERVICES
Type "LISTCOMMANDS 0" to enumerate service commands.
3	TESTSTREAM
Total input measurements: 39, total output measurements: 0
5 EXTERNAL!DATAPUBLISHER
Publishing data to 0 clients.
6 STATISTIC!SERVICES
Currently publishing 95 statistics
7 ALARM!SERVICES
0 events processed since last start
11	PWRCALC
Total input measurements: 4, total output measurements: 2

[bookmark: Command:_List_/o][bookmark: _Toc24551513]Command: List /o
LIST:Success(/o) - System Uptime: 7 Hours 49 Minutes 55 Seconds
>> All defined adapters in Output Adapter Collection (2 total) ID	Name
---------- --
1 [bookmark: ListCommands__displays_the_possible_comm]PPA

[bookmark: _Toc24551514]Command: ListCommands
Displays the possible commands for a specified adapter

Example: listcommands 2

LISTCOMMANDS:Success(2) - Adapter "SHELBY" [Type = PhasorMeasurementMapper] Command List:

SendCommand(TVA.PhasorProtocols.DeviceCommand command) Sends the specified command to connected phasor device.
ResetStatistics()
Resets the statistics of all devices associated with this connection.
ResetDeviceStatistics(UInt16 idCode)
Resets the statistics of the device with the specified ID code.
DeleteCachedConfiguration()
Attempts to delete the last known good configuration.
RequestCurrentConfiguration()
Requests the current configuration frame and returns it to the caller.
LoadCachedConfiguration()
Attempts to load the last known good configuration.
LoadConfiguration(String configurationFileName) Attempts to load the specified configuration.
Start()
Starts the adapter or restarts it if it is already running.

 Stop()
Stops the adapter.

SetInitializedState(Boolean initialized)
Manually sets the intialized state of the adapter.
SetTemporalConstraint(String startTime, String stopTime, String constraintParameters)
Defines a temporal processing constraint for the adapter.

Example: listcommands 3

LISTCOMMANDS:Success(3) - Adapter "TESTSTREAM" [Type = Concentrator] Command List:

StartDataChannel()
Manually starts the real-time data stream.
StopDataChannel()
Manually stops the real-time data stream.
UpdateConfiguration()
Reloads the phasor data concentrator configuration.
ExamineQueueState()
Examines concentration frame queue state.
ResetStatistics()
Resets the statistics of the action adapter.
SetInitializedState(Boolean initialized)
Manually sets the intialized state of the action adapter.
SetTemporalConstraint(String startTime, String stopTime, String constraintParameters) Defines a temporal processing constraint for the adapter.

[bookmark: _Toc24551515]Application of Console Commands:

Using the List /a command, we get the ID of the concentrator

	ID
	Name
	Status

	3
	TESTSTREAM
	Total input measurements: 39, total output measurements: 0

We can also see there are 39 input measurements, 13 from each of the input adapters

Next, we use the ExamineQueueState command to evaluate the concentrator queue details with the invoke command

Invoke 3 ExamineQueueState (console view)
[image:]
This shows that only 26 of 39 measurements were being processed

The results return the following:

INVOKE:Success(3 examinequeuestate) - Command "examinequeuestate" successfully invoked. [8/17/2012 00:00:00 PM] [TESTSTREAM] Concentrator frame queue detail:

Ordered frame queue count: 89 Frame hashtable count: 89

Frame 0000 @ 17-Aug-2012 02:18:27.566 - 26 measurements, 66.67% received
Frame 0001 @ 17-Aug-2012 02:18:27.600 - 26 measurements, 66.67% received
Frame 0002 @ 17-Aug-2012 02:18:27.633 - 26 measurements, 66.67% received
Frame 0003 @ 17-Aug-2012 02:18:27.666 - 26 measurements, 66.67% received
Frame 0004 @ 17-Aug-2012 02:18:27.700 - 26 measurements, 66.67% received
Frame 0005 @ 17-Aug-2012 02:18:27.733 - 26 measurements, 66.67% received
Frame 0006 @ 17-Aug-2012 02:18:27.766 - 26 measurements, 66.67% received
Frame 0007 @ 17-Aug-2012 02:18:27.800 - 26 measurements, 66.67% received
Frame 0008 @ 17-Aug-2012 02:18:27.833 - 26 measurements, 66.67% received
Frame 0009 @ 17-Aug-2012 02:18:27.866 - 26 measurements, 66.67% received
Frame 0010 @ 17-Aug-2012 02:18:27.900 - 26 measurements, 66.67% received
Frame 0011 @ 17-Aug-2012 02:18:27.933 - 26 measurements, 66.67% received
Frame 0012 @ 17-Aug-2012 02:18:27.966 - 26 measurements, 66.67% received
Frame 0013 @ 17-Aug-2012 02:18:28.000 - 26 measurements, 66.67% received
Frame 0014 @ 17-Aug-2012 02:18:28.033 - 26 measurements, 66.67% received
Frame 0015 @ 17-Aug-2012 02:18:28.066 - 26 measurements, 66.67% received

The problem was determined to be a measurement mapping error found in an input adapter:

[8/17/2012 3:24:58 PM] [SHELBY2] Loaded 34 active device measurements... [8/17/2012 3:24:58 PM] [SHELBY] Loaded 34 active device measurements... [8/17/2012 3:24:58 PM] [SHELBY3] Loaded 24 active device measurements...

After correcting the problem with measurement mapping, use the “examinequestate”
command to review the output:

Invoke 3 ExamineQueueState (console view)
[image:]

The results return the following:

INVOKE:Success(3 examinequeuestate) - Command "examinequeuestate" successfully invoked. [8/17/2012 00:00:00 AM] [TESTSTREAM] Concentrator frame queue detail:

Ordered frame queue count: 90 Frame hashtable count: 90

Frame 0000 @ 17-Aug-2012 14:57:50.433 - 39 measurements, 100.00% received
Frame 0001 @ 17-Aug-2012 14:57:50.466 - 39 measurements, 100.00% received
Frame 0002 @ 17-Aug-2012 14:57:50.500 - 39 measurements, 100.00% received
Frame 0003 @ 17-Aug-2012 14:57:50.533 - 39 measurements, 100.00% received
Frame 0004 @ 17-Aug-2012 14:57:50.566 - 39 measurements, 100.00% received
Frame 0005 @ 17-Aug-2012 14:57:50.600 - 39 measurements, 100.00% received
Frame 0006 @ 17-Aug-2012 14:57:50.633 - 39 measurements, 100.00% received
Frame 0007 @ 17-Aug-2012 14:57:50.666 - 39 measurements, 100.00% received
Frame 0008 @ 17-Aug-2012 14:57:50.700 - 39 measurements, 100.00% received
Frame 0009 @ 17-Aug-2012 14:57:50.733 - 39 measurements, 100.00% received
Frame 0010 @ 17-Aug-2012 14:57:50.766 - 39 measurements, 100.00% received
Frame 0011 @ 17-Aug-2012 14:57:50.800 - 39 measurements, 100.00% received
Frame 0012 @ 17-Aug-2012 14:57:50.833 - 39 measurements, 100.00% received
Frame 0013 @ 17-Aug-2012 14:57:50.900 - 39 measurements, 100.00% received
Frame 0014 @ 17-Aug-2012 14:57:50.933 - 39 measurements, 100.00% received

We can now see that all of the measurements are being processed

[bookmark: _Toc24551516]Conclusions:

· The console commands provide a quick and convenient way to analyze the system
· Just to name a few:
· list of adapters (the list command)
· view low level data (the status command)
· concentration frame queue state (the examinequeuestate command)
· Invokes a command for specified adapter (invoke command)

A few example screen shots
[image:][image:]

[bookmark: _Toc24551517]Signal Reference Notes
For synchrophasor measurements the signal reference field is critical - it is used to map device elements in a protocol frame (e.g., IEEE C37.118) to and from measurements. The format of this field is very regular:
The text based signal reference field must contain the Acroynm of the associated Device, followed by a dash (-), followed by the two character SignalType Suffix then optionally followed by an index. Note that the mapping is by order, not by index or name. Thus, it is critical that the indexed measurements be modeled in the order that they are returned from the source device. For example SHELBY-PM4 represents the fourth phasor magnitude for the SHELBY Device and SHELBY-SF represents its status flags.
The information below describes the original specification:

In order to rebroadcast data from the sub-second sources, a field is required to be able to associate each point with its associated "field" in a synchrophasor protocol data frame. This document defines these relations.
This field is normally for internal use only and is stored in a field associated with each defined measurement point:

	Type of Point
	Description
	Abbreviation
	Indexed?

	Phasor Magnitude
	Voltage (Volts) or Current (Amps)
	PM
	Yes

	Phasor Angle
	Angle (Degrees)
	PA
	Yes

	Frequency
	Frequency (Hz)
	FQ
	No

	Type of Point
	Description
	Abbreviation
	Indexed?

	dF/dt
	Frequency rate of change
	DF
	No

	Digital Value
	
	DV
	Yes

	Analog Value
	
	AV
	Yes

	Status Flags
	
	SF
	No

Examples below follow the prescribed format of: the PMU/device acronym, a dash and one of the above abbreviations. Also, if the type of point is indexed, adding the associated entry index, for example:

	SHELBY-PM1
	ß Magnitude associated with Phasor1 entry

	SHELBY-PA1
	ß Angle associated with Phasor1 entry

	SHELBY-PM2
	ß Magnitude associated with Phasor2 entry

	SHELBY-PA2
	ß Angle associated with Phasor2 entry

	SHELBY-PM3
	ß Magnitude associated with Phasor3 entry

	SHELBY-PA3
	ß Angle associated with Phasor3 entry

	SHELBY-PM4
	ß Magnitude associated with Phasor4 entry

	SHELBY-PA4
	ß Angle associated with Phasor4 entry

	SHELBY-PM5
	ß Magnitude associated with Phasor5 entry

	SHELBY-PA5
	ß Angle associated with Phasor5 entry

	SHELBY-FQ
	ß Frequency value associated with Frequency entry

	SHELBY-DF
	ß Rate of frequency change associated with Frequency entry

	SHELBY-DV1
	ß Digital Value 1

	SHELBY-DV2
	ß Digital Value 2

	SHELBY-SF
	ß Status Flags

Using this information, you can map individual measurements to and from most any synchrophasor protocol data frame.

[bookmark: _Toc24551518]Configuring Multiple openHistorian Archive Locations
The “ArchiveDirectories” connection string parameter can specify any number of paths for archiving data; separate multiple paths with a semicolon.
Normally only a “Working Directory” is specified and archives end up in this folder, a working directory is still required and should be for fast I/O; the working directory path defaults to the openHistorian installation folder “\Archive”, typically, “C:\Program Files\openHistorian\Archive\”.
When a set of archive directories is specified, once enough of an archive is built-up in the working directory, the historian will move files to the archive directories. The archive paths are “filled-up” in order of specification.
There is also a “AttachedPaths” connection string parameter. This parameter allows importing folders and/or files as read-only into the available historian data. Typically this is used for read- only inclusions of time-series data.
You can add any of these settings to the connection string parameter of your current primary phasor archive found under the menu as “Outputs / Historian Instances” in the openHistorian Manager application.
One thing to keep in mind, since paths are separated by a semicolon and key/value pairs in the connection string are also separated by semicolons, you will need to enclose multiple path values in braces, for example:

ArchiveDirectories={D:\Archive1; E:\Archive2; \\myserver\myshare\Archive}; WorkingDirectory=C:\Program Files\openHistorian\Archive\

Another few things to keep in mind: if drives are physical, you will need to make sure the use “NT SERVICE\openHistorian” is allowed access to the specified drives. Mapped drive letters are typically not visible to the openHistorian service user, so remote paths will need to be specified in UNC format. UNC style mapped paths will need to be authenticated and since the default service user is the openHistorian service user with minimal rights it cannot be used for remote paths. One way to handle this is to use a domain user for the service, e.g., a managed service account, that has access to the to the UNC folders. Another way is to setup simple loggers in the openHistorian.exe.config file to these paths with needed credentials, e.g., the health exporter.

For example:

<healthExporter>
<clear />
<add name="ExportTimeout" value="-1" description="Total allowed time for each export to execute, in milliseconds. Set to -1 for no specific timeout." encrypted="false" />
<add name="MaximumRetryAttempts" value="4" description="Maximum number of retries that will be attempted during an export if the export fails. Set to zero to only attempt export once."
encrypted="false" />
<add name="RetryDelayInterval" value="1000" description="Interval to wait, in milliseconds, before retrying an export if the export fails."
encrypted="false" />
<add name="ExportCount" value="2" description="Total number of export files to produce."
encrypted="false" />
<add name="ExportDestination1" value="C:\" description="Root path for export destination. Use UNC path (\\server\share) with no trailing slash for network shares."
encrypted="false" />
<add name="ExportDestination1.ConnectToShare" value="False" description="Set to True to attempt authentication to network share."
encrypted="false" />
<add name="ExportDestination1.Domain" value="" description="Domain used for authentication to network share (computer name for local accounts)."
encrypted="false" />
<add name="ExportDestination1.UserName" value="" description="User name used for authentication to network share."
encrypted="false" />
<add name="ExportDestination1.Password" value="" description="Encrypted password used for authentication to network share."
encrypted="true" />
<add name="ExportDestination1.FileName" value="Projects\openHistorian\Build\Output\Debug\Applications\openHistorian\Health.txt"
description="Path and file name of data export (do not include drive letter or UNC share). Prefix with slash when using UNC paths (\path\filename.txt)."
encrypted="false" />
<add name="ExportDestination2" value="\\myserver\myshare" description="Root path for export destination. Use UNC path (\\server\share) with no trailing slash for network shares."
encrypted="false" />
<add name="ExportDestination2.ConnectToShare" value="True" description="Set to True to attempt authentication to network share."
encrypted="false" />
<add name="ExportDestination2.Domain" value="SPP" description="Domain used for authentication to network share (computer name for local accounts)."
encrypted="false" />
<add name="ExportDestination2.UserName" value="MyUser" description="User name used for authentication to network share."
encrypted="false" />
<add name="ExportDestination2.Password" value="MyPassword" description="Encrypted password used for authentication to network share."
encrypted="true" />
<add name="ExportDestination2.FileName" value="\Archive\Health.txt" description="Path and file name of data export (do not include drive letter or UNC share). Prefix with slash when using UNC paths (\path\filename.txt)." encrypted="false" />
</healthExporter>

Note that modification of the configuration file should happen only when the service is not running. Also, when you save changes to the connection string for the openHistorian local output adapter singleton, it is best to restart the service.

[bookmark: _Toc24551519]Setting up Data Gap Recovery with openHistorian

These settings can be used to enable a buffer archive in SIEGate and create a subscription in openHistorian that has data recovery enabled. This can be used to limit data loss on the subscriber side, openHistorian, due to service restarts or failures. This does not prevent data loss from a SIEGate restart or failure. For setting up a high availability (HA) SIEGate set, see
OpenHistorian 2.0 archiver will be used to enable this functionality, as it has a much lower disk IO and CPU utilization for the same number of data streams.

[bookmark: _Toc24551520]Copy/Install openHistorian 2.0 libraries in GSF Target App
As we will be using the openHistorian 2.0 archiver, a few libraries must be installed in the target (e.g., SIEGate) program directory. This list of files is from Dec, 2016 and is subject to change. All needed files can be found in the openHistorian 2.0 program directory. Be sure to use releases from the same version of the Grid Solutions Framework (GSF) and build date. Other DLLs may be required, depending on your version. You may be able to determine which dlls you need by comparing the openHistorian program folder and the SIEGate program folder.
GSF.SortedTreeStore.dll openHistorian.Core.dll openHistorian.Adapters.dll
[image:]

[bookmark: _Toc24551521]Enabling Buffer Archive
The SIEGate Buffer archive uses the same internal archiving mechanism as openHistorian 2.0, however it is configured to roll off after a specified time. In this example we will be using a 24 hour archive. This will limit the amount of disk space used and allow the archive to be high performance.

Notes: In this example we will be using D:\SIEGateBuffer\Archives as the archive folder and D:\SIEGateBuffer\Temp as the working directory. You can change this to fit your storage solution. The folder should be treated as buffer/cache data, prioritizing IO and availability vs long term capacity.
[image:]Open SIEGate Manager, and navigate to Outputs\Historian Instances.
Click the (+)Add New button, and enter the following settings in the form.

	Setting
	Value

	Acronym
	PPA

	Name
	Buffer Phasor Archive

	Type Name
	openHistorian.Adapters.LocalOutputAdapter

	Assembly Name
	openHistorian.Adapters.dll

	Connection String
	ArchiveDirectories= D:\SIEGateBuffer\Archives ;MaximumArchiveDays=1; WorkingDirectory= D:\SIEGateBuffer\Temp

	Description
	Buffer archive for subscriber data recovery.

	Load Order
	0 (default)

	Reporting Interval
	100000 (default)

	Local
	Checked (default)

	Enabled
	Leave Unchecked for now (default)

[image:]

Click the Save button when done. There should be a new line in the list of historian instances named 'PPA'.
[image:]

Click the Initialize button, followed by checking the Enabled checkbox. Click Save . If you are watching the SIEGate console and see the following error, be sure you copied the dll files from step 1 and the GSF versions match.
[image:]

[bookmark: _Toc24551522]Configure SIEGate PPAREADER
Now that the buffer historian is set up, the PPAREADER in SIEGate must be configured to use the openHistorian 2.0 libraries. In SIEGate Manager, navigate to Inputs\Manage Custom Inputs .
[image:]

If, PPAREADER does not exist, create a new instance. Otherwise modify the existing instance to use the following settings:

	Setting
	Value

	Name
	PPAREADER

	Load Order
	0 (default)

	Search Directory
	C:\Program Files\SIEGate\ (default)

	Type
	openHistorian 2.0 (Local)

	Connection String
	archiveLocation= D:\SIEGateBuffer\Archives ; instanceName=PPA; sourceIDs=PPA; publicationInterval=333333; connectOnDemand=true

[image:]

Once the form is complete, check Enabled , click Save and Initialize . You may also need to restart the SIEGate service.

[bookmark: _Toc24551523]Setting Measurements to be Archived

Finally, each measurment you wish to enable recovery for must have it's historian set to PPA. This can be done from the database for all measurements, or from the SIEGate Manager measurment page for individual measurments.

-- sample sql to set all measurements to be archived

-- Get the ID of the newly created historian instance SELECT ID from Historian WHERE Acronym = 'PPA';

-- Update all measurments to use the ID of the new historian, 2 in this example. UPDATE [SIEGate].[dbo].[Measurement]
SET [HistorianID] = 2 WHERE [PointID] in
(SELECT meas.PointID FROM [SIEGate].[dbo].[Measurement] meas LEFT OUTER JOIN
[SIEGate].[dbo].[SignalType] sig ON meas.[SignalTypeID] = sig.[ID] WHERE sig.[Acronym] != 'STAT');

[bookmark: _Toc24551524]Enabling Data Recovery on openHistorian
On the openHistorian subscription side, you can enable data recovery when establishing a new connection to SIEGate, or by adding the dataGapRecovery setting to the existing connection string.

[image:]

// config string template dataGapRecovery={
enabled=true; recoveryStartDelay=<seconds>; dataMonitoringInterval=<seconds>; minimumRecoverySpan=<seconds> maximumRecoverySpan=<seconds>; recoveryProcessingInterval=<miliseconds>
};

// example
dataGapRecovery={enabled=true; recoveryStartDelay=20; dataMonitoringInterval=10; minimumRecoverySpan=30; maximumRecoverySpan=864000; recoveryProcessingInterval=66};

[bookmark: _Toc24551525]
Alarming Configuration
The alarming component generates alarms by sampling the full resolution phasor data in real-time with features to export alarm state to external systems that can be used to annunciate and manage these alarms.
Creating an alarm requires the addition of a new “signal” in the openPDC or openPG that represents the alarm state. This signal is published on change of alarm state and is time stamped at the time of this change of state. For example, for a source signal of frequency values would be tested at the periodicity of the incoming data (e.g., 30 times a second). Once an alarm condition is detected, say for low frequency, an alarm signal value would be published with the alarm state set to TRUE.
The alarm signal produced by the Alarming Component can be exported as part of phasor data streams or exported via other provided openPDC and openPG interfaces – such as web services or via the Gateway Exchange Protocol (GEP)
The Alarming Component can generate Condition Based Alarms such as Internal/External Range, Unreasonable Data and Latched Values
[bookmark: _Toc24551526]The Alarm Configuration Screen
The alarm configuration window screen provided by the openPDC Manager is shown below. It allows the openPDC administrator to:
1. Define an Alarm Point which can be “in Alarm” or not.
2. Associate this alarm point with a source measurement, or signal
3. Define a test on this signal to determine if it is an alarm state
As is the case for other configuration settings in the openPDC, the definition of the alarm entered on this configuration screen is saved in the configuration database.
Each input field is labeled in Figure 1 and a description of this input field is provided below.
[image:]
Figure 1. Alarm Configuration Screen
	[image:]
	[bookmark: _Toc24551527]Tag Name

The alarm state is set in the openPDC within a standard signal, or measurement point. Signals are identified by their unique tag name. Therefore, each alarm must have a tag name as its unique identifier. Typically, an alarm tagging pattern is developed by each company to distinguish alarm tags from others. For example, an alarm tagging pattern could be:
[ALRM_] + [Type] + [Device]; e.g., ALRM_FREQ_SHELBY
Tag names are limited to 200 characters.
	[image:]
	Source Signal

Alarms are raised through tests on signals. This signal can be among any defined within this openPDC instance. This field is used to select the source signal for the alarm.
	[image:]
	Operation

Through this drop-down box, the openPDC administrator selects the “test” or operation to be performed on the source signal to determine if the source signal is in an alarm state. The first six options are logical operators. The last item, “latched” is used to alarm on a point that never changes value. Operation options are show below:
Equal To
Not Equal To
Greater Than or Equal To
Less Than or Equal To
Greater Than
Less Than
Latched

By far, the most used operation options are “Greater Than” and “Less Than”.
	[image:]
	Alarm Point

The Alarm Point is the triggering value for the alarm. For example, to alarm on frequency greater than “60.05” Hz, the alarm point would be “60.05”.
	[image:]
	Tolerance

For only the “Equal To” and “Not Equal To” operations a setting is provided to enable the user to specify a band, or tolerance, around which the source signal can be assume to equal (or not equal) the alarm point. Tolerance is typically set based on the accuracy of transducers.
If no value is entered, a null entry is made to the configuration database and an effective tolerance value of zero is used for this alarm point.

	[image:]
	Delay

To avoid chattering alarms, i.e., alarms that come and go quickly, typically a time delay is used to assure that the source signal is clearly in the alarm state prior to raising the alarm. Delay is the time (in seconds) that a signal must be outside alarm point before the alarm is raised.
If no value is entered, a null entry is made to the configuration database and an effective time delay value of zero is used for this alarm point.
[image:]
Figure 2. Alarm Delay
Note: In Figure 2 and subsequent figures, the measured value, or source signal, is not continuous as depicted by the purple line. Rather it is a stream of sampled values that are tested at the sampling rate for that signal.
	[image:]
	Hysteresis

As a second method to reduce chatter in the change of alarm state, a value can be entered which biases the Alarm Point by an additional amount prior to clearing the alarm. As seen in Figure 3, this biased Alarm Point is called the Hysteresis Point.
Unlike the delay parameter, which is time based, hysteresis is entered as an incremental value in the units of the source signal. For example, it might be desirable to set an low frequency alarm at 59.95 hertz but not clear that alarm until frequency is clearly on the upswing – say 59.98 hertz. In this case, the hysteresis would be 0.03. Hysteresis is always a positive value regardless of the alarm condition test.
If no value is entered, a null entry is made to the configuration database and an effective hysteresis value of zero is used for this alarm point.
[image:]
Figure 3. Hysteresis
	[image:]
	Severity

Quite often an event will trigger multiple alarms. So that downstream alarm managers can effectively manage alarms, the Alarming Component allows the drop-down assignment of alarm severity level. The Alarm Component has been developed to be compliant with OPC standards for alarm severity designation. Severity levels have been assigned with the Alarm Component to correspond to OPC numeric severity designations. Listed below are the names for these levels with their corresponding OPC numeric designation.
Information (50)
Low (150)
Medium Low (300)
Medium (500)
Medium High (700)
High (850)
Critical (950)
Error (1000)

Within the openPDC architecture, alarm severity is not included as part of the signal information that indicates alarm state. There is no place for this information within the message payload for the openPDC. However, this information can be obtained through query of the configuration data base or through use of the web-services interface to the openPDC.
	[image:]
	Description

A long description of the alarm can be entered here. This field effectively has no maximum length.
	[image:]
	Load Order

This parameter was added to the Alarming Component to assure consistency with other openPDC configuration screens. It can ignored for now.
	[image:]
	Enabled

Alarms can be pre-configured but not enabled. This check box enables/disables the alarming for this alarm point.
	[image:]
	Create Associated Measurement

In general, an associated measurement should be created along with this alarm point. Not doing so does not automatically recreate a record in the measurements table.
	[image:]
	Established Alarm Listing

This is a list of all alarms that have been created with all relevant information displayed. You may click on the column header to have it sort the list of alarms by that column.
[bookmark: _Toc24551528]Advanced Alarming
Often a single alarm on a signal is not sufficient. For example, a set of alarms – one for high alarm and one for low alarm is typically implemented. In addition, alarms may need to be nested so that the first alarm provides a warning and the second an alert. As shown in Figure 4, the Alarming Component can be configured to implement nested alarms.
[image:]
Figure 4. Alarm Nesting
[bookmark: _Toc24551529]Alarming the openPDC Performance Historian
An openHistorian can be configured to become and Alarm Historian of raw alarm signals. Turning of openHistorian compression allows the logging of all alarm state changes prior to filtering without historian overload.
Alarms are sent from the Alarming Service to the Alarm Repository through an alarming message that allows easy integration of the openAlarm Alarming Service and Manager
The Alarm Manager can also accept OPC-based alarm messages

[bookmark: _Toc24551530]Example 1 –PMU Connection Alarm
This is an example of how as alarm should be constructed for a Boolean signal such as the status of a PMU connection.
Tag Name = ALRM_NOconnection_SHELBY
Signal = “TVA:SHELBY!ST11” NOTE: This signal is from Performance Historian and is recorded every 10 seconds.
Operation = Less Than
Alarm Point = 100
Tolerance = N/A
Delay = 60 seconds
Hysteresis = 0
Severity = Error (1000)
Load Order = N/A
Enabled = True (checked)
Create Associated Measurement = True (checked)
[image:]
Figure 5 - PMU connection example

[bookmark: _Toc24551531]Example 2 –Low Frequency Alarm
Tag Name = ALRM_LOWFREQ_SHELBY
Signal = “TVA:SHELBY:ABBF”
Operation = Less Than
Alarm Point = 59.95 Hz
Tolerance = N/A
Delay = 0.5 (seconds)
Hysteresis = 0.03
Severity = Medium (500)
Load Order = N/A
Enabled = True (checked)
Create Associated Measurement = True (checked)

[image:]

[bookmark: _Toc24551532]Example 3 – Alarming for Latched Phasor Magnitude
Tag Name = ALRM_LATCHEDVOLTS_SHELBY
Signal = “TVA:SHELBY:ABB?”
Operation = Latched
Alarm Point = N/A
Tolerance = N/A
Delay = 300s
Hysteresis = N/A
Severity = Error (1000)
Load Order = N/A
Enabled = True (checked)
Create Associated Measurement = True (checked)
[image:]

[bookmark: _Toc24551533]Appendix: Web Links
Training Material:

ftp://gridprotectionalliance.org/Download/XM/XM%20Training.zip
We didn’t have to cover all these presentations, so please let me know if you have questions about something you read

Documentation:

Filter Expressions:
https://github.com/GridProtectionAlliance/gsf/blob/master/Source/Documentation/FilterExpressions.md
Remember that filter expressions are used to define a dynamic set of input or output measurements associated with an adapter. They can also be used to select a set of values to query from Grafana.

Common Statistics:
https://github.com/GridProtectionAlliance/gsf/blob/master/Source/Documentation/CommonStatistics.md
You can use these statistics, which are calculated for each device, data subscriber, data publisher or for the system, as part of a dashboard to display ongoing data quality or system health. Note that statistics are archived in a separate historian, for example, in Grafana you see this as the “OHSTAT” data source.

Grafana Functions:
https://github.com/GridProtectionAlliance/gsf/blob/master/Source/Documentation/GrafanaFunctions.md
These functions are available inside Grafana to apply a function on all series values, on the entire set of series values, or over a slice of all series at a given time interval. These functions will help you to create very powerful and effective displays.

Grafana openHistorian Data Source:
https://grafana.com/plugins/gridprotectionalliance-openhistorian-datasource
This documentation details how to use the openHistorian, 1.0 and 2.0, from within Grafana. It covers three modes of usage: (1) Element List Query Builder, (2) Filter Expression Query Builder and (3) the Text Editor Query Builder. The first two modes, Element List and Filter Expression Builder, are both provided to help get you started quickly. The most powerful way to build expressions is to learn to type them yourself using the Text Editor mode. Review the Filter Expressions documentation above to get started.

Grafana OSI-PI Data Source:
https://grafana.com/plugins/gridprotectionalliance-osisoftpi-datasource
This documentation covers how to use the Grafana data source for OSI-PI and PI-AF. It requires the PI Web API already installed. Important note: if you are already pushing data to OSI-PI from openHistorian/openPDC, etc. you can actually “proxy” data from OSI-PI using the openHistorian can connect to the data in Grafana using the Grafana openHistorian Data Source – this mode of deployment has two benefits: (1) you do not need to install the PI Web API (which can be tricky), and (2) it allows you to use the Grafana Functions on OSI-PI data.

Phasor Protocol Comparisons:
https://www.osti.gov/search/semantic:1504742
This paper compares the popular available synchrophasor protocols that are available. However, as background and introduction, the paper includes many sections on data framing, TCP, UDP and other transport protocols along with their effects on a network. I suggest using this paper as required reading for anyone wanting to better understand synchrophasor protocols and their effects on a network.

Gateway Exchange Protocol (GEP):
https://www.gridprotectionalliance.org/docs/products/gsf/gep-overview.pdf
The Gateway Exchange Protocol is primary protocol in use today for exchange of streaming time-series data. Like with PMU Connection Tester for synchrophasor protocols, GEP has a connection tester:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/GEP_Subscription_Tester.md
Also, the next version of GEP is called the Streaming Telemetry Transport Protocol (STTP) and is currently in development to become a standard, IEEE 2664. All new development, include the specification, can be found here:
https://github.com/sttp/

Creating an Internal GEP Data Transfer between Two Systems:
https://github.com/GridProtectionAlliance/SIEGate/blob/master/Source/Documentation/wiki/Creating_Internal_Gateway_Connections.md
This documentation shows how to create an internal, common, GEP data transfer connection between two GSF time-series applications.

Creating a Secured (TLS) GEP Data Transfer between Two Systems:
https://github.com/GridProtectionAlliance/SIEGate/blob/master/Source/Documentation/wiki/Creating_Secured_Gateway_Connections.md
This documentation shows how to create a secured, and point controlled, GEP data transfer connection between to GSF time-series applications.

Creating Custom Adapters:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Developers_Custom_Adapters.md
This documentation provides some step-by-step details on how to create a custom adapter. The following companion documentation provides more detail using two examples:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Developers_Two_Custom_Adapter_Examples.md

Using the Dynamic Calculator Adapter:
https://github.com/GridProtectionAlliance/openPDC/raw/master/Source/Documentation/wiki/Use_and_Configuration_Guides.files/Dynamic_Calculations.pdf
This documentation provides details on how to setup and configure the DynamicCalculator for performing simple math and expressions on incoming data – which is easier than creating your own adapter. Also see the following documentation on how to write expressions:
· https://github.com/mparlak/Flee/wiki
· https://www.codeproject.com/Articles/19768/Flee-Fast-Lightweight-Expression-Evaluator

Connection String Parameters:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Connection_Strings.md
On this page you will find documentation for the connection strings for many common adapters available to time-series applications.

Help for Common Connection String Parameters, e.g., LagTime and LeadTime:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Help_Me_Choose_Diagrams.md#lag-time
On this page you can find flow-chart diagrams for selecting the best values for common adapter parameters.

XML Configuration File Settings:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Config_File.md

Data Quality Monitoring Adapters:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Data_Quality_Monitoring.md
This page details many of the data quality monitoring adapters that are natively available to the system and how they are used. Source code for these adapters can be found here:
https://github.com/GridProtectionAlliance/gsf/tree/master/Source/Libraries/Adapters/DataQualityMonitoring

Enabling Limits on the Data Correctness Report:
https://github.com/GridProtectionAlliance/pdqtracker/wiki
This page details the database query to run to enable measurement limits on meta-data for use with the correctness report.

Customizing Tag Naming Convention:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Custom_Point_Tag_Naming_Convention.md
This documentation shows how to customize the format of point tags when adding new synchrophasor devices. The default format details can be found here:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Developers_Automated_Phasor_Tag_Naming_Convention.md

Remote Console Commands:
https://github.com/GridProtectionAlliance/openPDC/raw/master/Source/Documentation/wiki/Use_and_Configuration_Guides.files/Command_Line_for_Improved_Diagnostics.pdf
This documentation covers some of the most commands needed for using the remote console. Always type the “Help” command to get details on a new commands that may be available.

Configuration of Alarms:
https://github.com/GridProtectionAlliance/openPDC/raw/master/Source/Documentation/wiki/Use_and_Configuration_Guides.files/Alarming_in_openPDC_and_openPG.pdf
This documentation covers the creation of new alarms and all associated parameters.

Understanding the Measurement Signal Reference Field:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Developers_About_the_Signal_Reference.md
Here you find details about the “Signal Reference” field you find on the Measurement meta-data screen and how it is used by the system.

Configuring Multiple Archive Locations in openHistorian 2.0:
https://github.com/GridProtectionAlliance/openHistorian/wiki/Configuring-Multiple-Archive-Locations
This documentation details how to configure multiple archive locations for the openHistorian.

Setting up Data-Gap-Recovery with the openHistorian 2.0:
https://github.com/GridProtectionAlliance/SIEGate/blob/master/Source/Documentation/wiki/DataGapRecovery.md
This page shows how to setup data-gap recovery between any time-series application and the openHistorian.

Running Time-series Applications on Linux:
https://gpags.sharepoint.com/:w:/r/TeamSite/_layouts/15/WopiFrame.aspx?guestaccesstoken=ADyQzHPxsfTh9qs4glPelL78SoBA1pTJV1%2fWy6b0ct4%3d&docid=08819043371f24a089e4924e86525dd69&action=view
These instructions detail steps for the openPDC, but can be equally applied to the openHistorian or other time-series applications. There are also instructions on running the openPDC on a Raspberry PI:
https://github.com/GridProtectionAlliance/openPDC/blob/master/Source/Documentation/wiki/Running_openPDC_on_a_Raspberry_Pi.md

openECA Project:
https://www.gridprotectionalliance.org/pdf/openECASummit/Robertson-Carroll.pdf
When developing new analytics you have two options, (1) to develop a custom action adapter, or (2) use the openECA to develop new analytics. The goal of openECA is to reduce the complexity of developing new algorithms that use streaming data. Additionally, several open source analytics have been developed using the openECA platform that you can review:
· Linear State Estimator: https://www.gridprotectionalliance.org/pdf/openECASummit/jones.pdf -- code: https://github.com/kdjones/openLSE and https://github.com/kdjones/lse
· The LSE includes a Topology Estimator: https://www.gridprotectionalliance.org/pdf/openECASummit/schmitt.pdf
· Line Parameter and Instrument Calibration: https://www.gridprotectionalliance.org/pdf/openECASummit/wang.pdf -- code: https://github.com/Chen0917
· Local/Regional Voltage Controller: https://www.gridprotectionalliance.org/pdf/openECASummit/yang.pdf -- code: https://github.com/DuotongYang
· PMU Synchroscope: https://www.gridprotectionalliance.org/pdf/openECASummit/barik.pdf -- code: https://github.com/tapasbarik/Analytics
· Oscillation Monitoring: https://www.gridprotectionalliance.org/pdf/openECASummit/donnelly.pdf – check with T&D Consulting for use: mdonnelly@mtech.edu

GPA Products Discussion Board:
https://discussions.gridprotectionalliance.org/
This site is a great place to ask questions because GPA developers will answer questions here as quickly as they can, however, the community of users also engage in helping each other. This link is included as a documentation item because all questions ever asked, and answered, are archived here.

[bookmark: _Toc24551534]Appendix: Phasor Protocol Comparisons

[bookmark: _Toc524419033][bookmark: _Toc524514690][bookmark: _Toc530140491][bookmark: _Toc524419036][bookmark: _Toc524445482][bookmark: _Toc24551535]ABSTRACT
In this paper, we compare three approaches used for continuous transfer of real-time synchrophasor data: IEEE C37.118.2-2011, IEC TR 61850905 and a new protocol being developed under the Department of Energy (DOE) project DOE-OE-859 called the Streaming Telemetry Transport Protocol (STTP). STTP is currently being advanced as a potential third standard protocol via the IEEE Power Engineering Society STTP P10 Work Group (P2664). Each of these three synchrophasor protocols is described in detail in this paper along with the basis for their operating characteristics using Internet Protocol (IP) transport.
The dominant protocol for the exchange of synchrophasor data is IEEE C37.118, both in the U.S. and internationally. The most recent IEEE C37.118 standard is broken into two parts where IEEE C37.118.1-2011 (Part 1) defines the normative synchrophasor measurement requirements and IEEE C37.118.2-2011 (Part 2) defines the protocol’s data transmission format. Both the IEC TR 61850905 and the emergent STTP specifications only address synchrophasor data transmission; therefore, this paper focuses on comparing the data transmission protocol elements of these standards.
The primary dimensions of comparison of these three protocols explored in this paper are: structure, efficiency, susceptibility to data loss, scalability, security, and other operability functionality. Additionally, though not specifically relevant to synchrophasor data telemetry, the three protocols are evaluated with respect to flexibility for transporting non-synchrophasor precise-time data streams.
[bookmark: _Toc524419034][bookmark: _Toc524514691]

[bookmark: _Toc530140492][bookmark: _Toc24551536]INTRODUCTION
Standardized data communication protocols are needed to transfer time-synchronized voltage and current phasor measurements made by substation devices, such as phasor measurement units (PMUs), to upstream systems and analytic tools [1]. Each of these “synchrophasor” measurements is associated with a time stamp that is acquired from a precise time source, such as a Global Positioning System (GPS) clock [2]. By making synchrophasor measurements at multiple locations on the grid then combining and time-aligning these measurements, a wide-area coherent data set is created to enable power system analysis and control [3].
PMU functionality is built into many intelligent substation electronic devices including digital relays and fault recorders but can also exist as hardware dedicated to the task. Substation devices that have PMU functionality sample voltages and currents using potential transformer (PT) and current transformer (CT) inputs, at high sampling rates (up to many kilohertz). This rapidly sampled data is used to produce derived synchrophasor measurement values at a lower streaming data rate, typically 30 samples per second in the U.S. The algorithms used to calculate the derived synchrophasor quantities are prescribed in detail in the IEEE C37.118.1-2011 standard and its IEEE C37.118.1a-2014 amendment [4].
In this document, three protocols identified as the most widely used for the transfer of synchrophasor data, IEEE C37.118.2-2011, IEC TR 61850905 and STTP / IEEE P2664 [footnoteRef:1], will be described so that they can be compared from the perspective of (1) structure, (2) efficiency, (3) susceptibility to data loss, (4) scalability, (5) security, and (6) other operability functionality. An overview of how these protocols emerged follows. [1: Although at the time of writing STTP / IEEE P2664 is still being developed, it is based upon the existing Gateway Exchange Protocol (GEP) which is in wide use for the exchange of synchrophasor data.]

[bookmark: _Toc524419035][bookmark: _Toc524514692][bookmark: _Toc530140493][bookmark: _Toc24551537]A Brief History of Synchrophasor Protocols
The first standard synchrophasor protocol, IEEE 1344, was created in 1995 based on the original development at Virginia Tech. This protocol included time synchronization and measurement standards defined around sample timing. Its simple structure was loosely based on COMTRADE and focused on the delivery of data from a single measurement device to the control center. This simple protocol was extended with an interim protocol called PDCstream developed by Western Electricity Coordinating Council (WECC) utilities which added data quality indications and allowed exchange of data from multiple measurement devices between phasor data concentrators (PDCs) and higher-level applications.
The next synchrophasor standard, IEEE C37.118, was completed in 2005. It introduced the total vector error (TVE) concept for evaluating measurements, established steady-state performance requirements and extended the data communication profile using concepts from IEEE 1344 and PDCstream, such as being able to combine data received from multiple devices into a single larger frame of data. As was the case with IEEE 1344, the IEEE C37.118 protocol was crafted to fill what was at the time a major gap in utility deployment of synchrophasor data systems – the need for an efficient protocol to support the reliable communication of high-volume (relative to other substation data flows) synchrophasor data from the measurement device to the control center.
In 2009, the IEEE made a request to the IEC for an IEEE C37.118 dual logo but the request was declined by the IEC because of a preexisting protocol technology, i.e., IEC 6185092, which could convey synchrophasor information. Following this, a joint task force was formed between the IEEE and IEC which worked on methodologies and agreements that led to changes in IEEE C37.118 and the ultimate creation of IEC TR 61850905.
To facilitate harmonizing the IEEE and IEC work, IEEE C37.118 was split into two parts before further development. Part 1 focused on the metrology of synchrophasor measurements and added requirements for dynamic operating conditions, frequency, and rate of change of frequency. Part 2 focused on defining the protocol’s binary data format. Both revisions were completed in 2011. Although Part 2 added new communication functionality, such as a new configuration frame format, its development was limited so that it would be backwards compatible with the original, then widely deployed, 2005 standard.
The IEC 61850905 technical report was completed in 2012. Given what at the time was the ubiquitous use of IEEE C37.118, the IEC standard included technical documents to facilitate migration from IEEE C37.118 to 90-5. These documents addressed updates to the IEC 61850-6 standard so that the existing IEEE C37.118 configuration frame could be used to define measurements being published in 90-5. The documents also included information on the use of Generic Object-Oriented Substation Event (GOOSE) messages and Sampled Values for synchrophasor data as prescribed in the umbrella IEC 61850 standard. The first implementation of the IEC TR 61850905 protocol was deployed at Pacific Gas and Electric Company (PG&E) between GE Multilin N60 and openPDC systems [5].
In 2014, as part of the DOE funded Secure Information Exchange Gateway (SIEGate) Project (DE-OE0000536), a new protocol called the Gateway Exchange Protocol (GEP) was introduced to handle an expanded set of requirements for the secure exchange of the data necessary to support real-time (i.e., current day) grid operations. This real-time data exchange requirement included synchrophasor data, SCADA data, and file-based data. The GEP protocol allowed SIEGate to control access to data at an individual measurement, or point, level. In addition, GEP was focused on control-center-to-control-center communications and was designed for very high-volume data flows.
Although GEP was open source and in common use by utilities, the protocol was not a formal standard and did not have wide multi-vendor adoption. In 2017, the DOE funded the Advanced Synchrophasor Protocol (ASP) Development and Demonstration Project (DE-OE0000859) to create a new protocol, extending and improving on GEP, with the goal of standardizing the protocol. Like GEP, the new protocol was optimized for the demands of transporting high-volumes of streaming synchrophasor data, however, it was not limited to synchrophasor data as the protocol allows for the transmission of any information that can be represented longitudinally, e.g., time-series data. The new protocol was called the Streaming Telemetry Transport Protocol (STTP), so named to emphasize its generalized applicability to the transfer of streaming data.
In 2018, the IEEE Power Engineering Society P10 STTP Working Group was established to develop a project authorization request (PAR) to put STTP on a path for standardization. The PAR was approved by the IEEE-SA New Standards Committee on September 27, 2018 and given a proposed IEEE standard number of P2664.

[bookmark: _Ref524602309][bookmark: _Toc530140494][bookmark: _Toc24551538]COMMUNICATIONS BACKGROUND
All synchrophasor protocols require an underlying communications transport layer. Protocol operation and data transmission quality are directly affected by the transport layer behavioral specifics; therefore, consideration of transport layer properties and behaviors is a crucial factor in understanding a protocol’s design and operation.
[bookmark: _Toc524419037][bookmark: _Toc524445483][bookmark: _Toc530140495][bookmark: _Toc24551539]Internet Protocol
The Internet Protocol (IP) is by far the most common protocol for the transmission of most any kind of data. The physical medium supporting IP is designed for general purpose transfer of data between any number of networked devices. Transport of variable sized blocks of data is supported in IP by breaking the data into smaller fragments called “data packets”. IP supports a variety of higher-level transport protocols to control the behavior of the transmission of data packets over a network. For synchrophasor protocols, the most common high-level protocols for IP are the transmission control protocol (TCP) and the user datagram protocol (UDP) [footnoteRef:2], each of which behave differently when dealing with data packet loss. Consequently, many of the impacts a large frame of synchrophasor data has on an IP network as well as its probability of it being delivered without loss is dependent upon the high-level transport protocol used to send the frame of data. [2: These protocols are often labeled as TCP/IP and UDP/IP for high-level protocol over Internet Protocol]

For IP, a block of data that exceeds the negotiated maximum transmission unit (MTU) size, i.e., the maximum size of a data packet, will be divided into multiple fragments where each fragment is an ordered data packet, see Figure 1. The typical MTU size for Ethernet networks is 1,500 bytes [6], however, the actual bytes available to the payload will be less than the MTU size since a portion of the data packet, the “header”, is used by the IP protocol itself to identify packet source and destination information. As an example, if a frame of IEEE C37.118.2-2011 data is 1,914 bytes – the approximate size of a configuration frame with four average sized PMUs – it will take at least 2 IP data packets to send the frame. If a frame of data is 65,536 bytes, the absolute largest frame size allowed by either IEEE C37.118.2-2011 or IEC TR 61850-90-5, it will take at least 44 IP data packets to send.
[bookmark: _Ref522028686][image: packet-fragmentation.png]Figure 1. Packet Fragmentation
Data packets can only be transmitted over a physical network connection one packet at a time. When two or more data packets arrive for transmission at the same time on any physical network media, the result is a “collision”. When a collision occurs, only one packet gets sent and the others are “dropped” [7]. Network collisions are not common on modern network infrastructure because of the increasing use of full-duplex and switch-based technology [8]; however, with heavy IP network traffic, data packet loss still occurs [9].
Non-collision-based data transport issues can occur when several devices are simultaneously transmitting data at high speed thereby putting a specific piece of supporting network equipment in a position where it cannot send all the traffic to the destination port. The reasons for the large data transport latency or for the dropped packets are typically CPU contention and memory limitations for data buffering[footnoteRef:3]. [3: Switch technology can also allow for a pause frame that is used for flow control at the Ethernet layer, however, if the buffers are at capacity the result is still the same, dropped packets.]

Because data packets can (and will) be dropped, IP is inherently unreliable. If any data packet existing as an ordered fragment of a larger data block gets dropped, the original data block can no longer be reconstituted on the receiving machine. It is the higher-level IP protocols, e.g., TCP, that handle the retransmission of dropped packets to ensure reliable delivery of a block of data. Because of the protocol design of IEEE C37.118.2-2011 and IEC TR 61850-90-5, without retransmission dropped data packets result in loss of the entire original data block. With retransmission, a large data block will be reliably delivered, but retransmissions can have a negative impact on latency.
TCP/IP - The TCP protocol for IP is focused on reliability – assuring the data packet order and integrity of the originally published block of data. The protocol guarantees that, even as packets are dropped, data packets get retransmitted and are inserted into their original order so that a received block of data exactly matches what was sent. Retransmission of data packets increases delivery latency and subsequent data blocks are held-up in memory on the receiving device until all prior blocks have been received to maintain packet order. This process requires “acknowledgement of delivery” and includes error checking.
As a TCP connection is set up between two systems, one system is considered a client initiating a connection and the other a server listening for a connection. This creation of a connection between a server and client is called handshaking and is used to establish a unique communications path between the server and client systems. Reliable data delivery in a heterogenous network environment is an absolute requirement for many data transfer use cases, hence TCP/IP’s popularity. However, all these activities to assure reliable data delivery result in TCP being considered a “heavy-weight protocol”.
In the case of synchrophasor data transmission, TCP is the protocol of choice when data completeness is valued over timeliness of delivery, e.g., for transmission of data to a permanent archive. Even with the possibility of increased latencies, many utilities select TCP as their synchrophasor data transport of choice and often overprovision network resources to reduce packet retransmission to assure low-latency, reliable data delivery.
UDP/IP - The UDP protocol for IP is focused on timely data delivery at the expense of reliability. The protocol employs no functionality to assure the proper order of data packets nor does it include functionality to retransmit dropped packets. There is also no provisioning for flow control, congestion control or handshake mechanisms. The lack of handshake negotiation between the sender and receiver results in UDP being considered a “connectionless” protocol. In short, UDP is a “fire-and-forget” protocol. In comparison to TCP, the UDP protocol is simple and is consequently considered a “light-weight protocol”.
The UDP protocol is not as popular as TCP since it allows for data loss; however, UDP packet losses on a network are measurable [10]. If measured losses are low and the use case for the data transfer can tolerate some amount of loss, then the UDP protocol is an attractive approach. Unlike TCP, by not retransmitting data packets UDP does not suffer with increased transmission latencies during times of high network stress.
Another cause of UDP data loss is improper buffer sizing as managed by the operating system socket implementation. Unlike losses that occur due to collisions or network stress, the configurable sized UDP buffer physically located on a sending or receiving system is used to temporarily hold UDP data until it can be processed – when this buffer is full, any further incoming or outgoing data will be dropped. This data loss occurs at the application level and often results in a mystery data loss diagnosis for those certain that the data was received from a wire analysis but never entered the protocol parser. For data that is continuously transmitted over UDP, creating a properly sized socket buffer, for both receive and transmit, is an important configuration option to reduce data loss.
In the case of synchrophasor data transmission, UDP is the protocol of choice when timeliness of delivery is valued over data completeness such as may be the case for a time-sensitive analytic engine. Even with the possibility of data loss, many utilities select UDP as their synchrophasor data transport of choice to ensure low-latency data delivery. For example, analytics results that provide operational insights during rapidly changing system conditions need up-to-date data – for this use case, operator reaction to delayed information could have unintended harmful consequences.
UDP Multicast - The UDP protocol for IP includes a feature for group-based data transmission called multicast. UDP multicast uses as a special IP address range reserved for traffic that is designed to broadcast a sole source stream to multiple destinations; a typical use case being the transmission of media streams, e.g., radio or live video. Multicast streams are handled by routers in a local network. By default, most routers will not allow UDP multicast traffic to cross into other network segments without explicit configuration, so its use within a routable network infrastructure must be a planned activity.
In the case of synchrophasors where the source data stream will have benefits when shared by multiple parties, UDP multicast is often used. A common use case is to use a single combined data stream of all available synchrophasor data and distribute the combined data stream to multiple receiving applications [11], e.g., in a laboratory environment. However, the distribution of data in this fashion means that all applications receive all data, which is not always an efficient use of bandwidth. Multicast deployments are best suited to single, smaller streams of data allowing sole source data streams to be distributed to multiple parties, e.g., data from a single device in a substation with limited network bandwidth being transmitted to multiple systems at a control-center in a network with ample bandwidth availability.
The challenge with traditional multicast, i.e., “any-source” multicast, for synchrophasor data is that any party can initiate a publication on a specific multicast IP address/port “endpoint” combination. When two or more parties start publishing on the same multicast endpoint, subscribers to the endpoint will receive all data from all sources; current frame-based synchrophasor protocols are not designed to work with interleaved data frames with different configurations from multiple sources. To alleviate this potential issue, multicast synchrophasor implementations typically operate with “source-specific” multicast, also called Protocol Independent Multicast Source-Specific Mode (PIM-SSM) as defined in Internet Group Management Protocol Version 3 (IGMPv3) [12]. Put simply, the source-specific multicast mode requires that the subscriber identify the source IP address of the desired publisher when initiating a subscription. Using the source IP address, the router can intelligently route only the desired data to the subscriber.
[bookmark: _Toc524419040][bookmark: _Toc524445484][bookmark: _Toc530140496][bookmark: _Toc24551540]Serial Communications
Unlike IP, serial communication is not used as a general-purpose data transport, instead it is used to transfer data between two physical devices, i.e., it is a point-to-point communications protocol. Serial communications technology has advanced significantly over the years with standards such as the universal serial bus (USB) and the high-definition multimedia interface (HDMI) coming into common use in general purpose computing [13].
Although almost non-existent in modern telecommunication and computing centers, the 1960’s era universal asynchronous transmitter and receiver (UART) protocol paired with the RS-232 electrical standard [13] [14] in still in wide use in the electric power industry. UART with RS-2322 is a simple data transmission technology that incorporates two separate wires for transmitting and receiving data [15]. RS-232 communication media and modulation methods limit data transmission to 100s of kilobits per second.
[bookmark: _Toc524445485]In environments where the infrastructure for serial communications already exists, electric utilities sometimes opt to use this infrastructure for the transmission of synchrophasor data. A common use of serial communications for synchrophasor data is inside substations between the measurement device and local communications or aggregation appliances.

[bookmark: _Toc530140497][bookmark: _Toc24551541]PROTOCOL DATA CHARACTERISTICS
Synchrophasor protocols are characteristically limited to a set of standard data types, groupings, publication frequencies, and serialization formats. The following paragraphs provide detail on the common data characteristics for synchrophasor protocols.
[bookmark: _Toc524445486][bookmark: _Toc530140498][bookmark: _Toc24551542]Types of Measured Quantities
All synchrophasor protocols define a specific format for the representation of time and the measured or calculated values that are associated with a given timestamp. These values include electrical system values, i.e., the “synchrophasor measurements”, and scalar power system measurements, such as frequency, and binary flags that represent asset, metering, or data quality state.
All three protocols recommend that synchrophasor timestamp values be provided in Coordinated Universal Time (UTC) with accuracy requirements defined in the IEEE C37.118.1-2011 standard. To produce measurement timing with sufficient accuracy to meet the standard, measurement systems require a precise and reliable time source such as a GPS clock. The actual bitwise serialization of timestamp values with included sub-second detail is protocol specific and typically idiosyncratic.
Synchrophasor measurements include “phasor values”, as either a voltage or a current, which are described as a tuple of two floating-point or integer quantities. A phasor is a complex equivalent of a simple cosine wave quantity where the complex modulus (in polar format) is the cosine wave amplitude and the complex angle is the cosine wave phase angle. A phasor measurement is an estimate of the actual angle calculated from many samples using the GPS common time signal as the reference for the measurement. As such, phasor measurements from all sites are considered synchronized and have a common phase relationship. The tuple that represents the complex phasor value have either a polar representation (a magnitude and an angle) or a rectangular representation (real and imaginary values). The actual coordinate representation used is denoted in the protocol configuration which defines metadata for the measured values. Although a typical substation measurement device will have three physical PT and CT inputs for an individual transmission line, it is common for a substation measurement device to be configured to restrict the reported voltage and current phasor values to only the computed positive sequence values.
Synchrophasor protocols also include formats for an estimated frequency value along with a value that represents the rate-of-change of the frequency (ROCOF). Frequency values are often transmitted as an offset, i.e., difference, from the nominal frequency.
The specifications allow for other optional timestamped measurements. These measurements are categorized as either a floating-point quantity, called an analog value, or a set of binary states (bits), called a digital value, which consists of 16 distinct state measurements per value. Analog values are typically used to carry meter-calculated data, such as real and reactive power. Digital values are a group of Boolean values that typically record the state of power system equipment such as a switch, breaker, or alarm state.
Finally, a single integer value, overloaded to contain a set of 16 “status flags” (bits), is specified to provide information on the state of metering such as the quality of the measured values, and known accuracy of the time source, among others.
[bookmark: _Toc524445487][bookmark: _Toc530140499][bookmark: _Toc24551543]Data Publication Rate
Synchrophasor protocol standards define a set of expected data publication rates with the actual publication rate being a major element of substation device configuration. The most widely used publication rate for synchrophasor data in the U.S. is 30 reports per second – also called samples per second. However, some utilities have configured substation devices to publish synchrophasor data at 60 or 120 samples per second. A hybrid approach is also used where the substation device is publishing locally within the substation at a high rate and that synchrophasor data is then down-sampled prior to communication to the control center. Other less common synchrophasor publication rates include 10, 12, 15, 20, 25, 50, 100, 240 and 480 samples per second. Selectable rates are a multiple of 50 or 60, the common nominal frequency rates of power systems.
[bookmark: _Toc524445488][bookmark: _Toc530140500][bookmark: _Toc24551544]Measurement Groupings
As standards for substation to control-center communication, IEEE C37.118.2-2011 and IEC TR 61850-90-5[footnoteRef:4] are device-centric protocols and as such it is natural for these protocols to create groups of measurements organized by substation measurement device. These device-centric protocols also support multiple data groups – i.e., data from multiple devices – within a single data stream. [4: Although the use case for data transport of IEC TR 61850-90-5 matches that of IEEE C37.118.2-2011 per implementation agreement, technically 90-5 can be configured to transport any sequence of defined measured values, however, all the values in the group must be for the same measured timestamp.]

Since PMU functions are typically an addition to existing functionality in mainstream substation measurement devices, the phasor measurements available for publication from a device are usually limited to the physical PT and CT inputs of the device. For example, a protective relay will normally have 3-phase voltage and current measurements available for a single transmission line; however, a DFR will typically measure all 3-phase currents and voltages for every transmission line in the substation[footnoteRef:5]. Regardless of the number of measurements or the number of transmission assets monitored, the typical paradigm of measurement grouping is by measurement device. Both the IEEE C37.118.2-2011 and the IEC TR 61850-90-5 synchrophasor standards are designed to operate on sets of data grouped by measurement device, e.g., a PMU, and are consequently considered “device-centric” protocols. The STTP protocol is instead a “measurement-centric” protocol. STTP focuses on individual measured values without imposing time-alignment restrictions, or device-centric notions, allowing measurement groupings, i.e., “subscriptions”, to be based on application need rather than imposing the use of predefined high-level groupings. As an example, the groups can be category driven, e.g., all available frequencies, with the availability of measurements changing dynamically, increasing or decreasing while data continues to stream, as source data made available to the publisher changes. [5: Data grouping illusions often develop where a group of synchrophasor data is associated with all data from a substation or a single transmission line. If modeling of synchrophasor data develops on a device-equals-line or device-equals-substation notion, this can lead to modeling issues when devices that monitor phasors measured on individual or multiple lines are later added to the system.]

[bookmark: _Toc524445489][bookmark: _Toc530140501][bookmark: _Toc24551545]Measurement Serialization
[bookmark: _Toc524510255]Software that takes newly acquired measurements and groups them together into a serialized package to prepare it for transport is called a “protocol generator”. Unless otherwise specified, serialization of synchrophasor measurement quantities by a protocol generator into a protocol’s specific binary format always uses network bit ordering, known as big-endian encoding. Most host computers manage numeric quantities with little-endian encoding; therefore, the bits of the values to be transmitted are typically reversed during the serialization process.

[bookmark: _Toc530140502][bookmark: _Toc24551546]DATA FRAMING
Synchrophasor protocols are implemented by software applications from the perspective of being either a data stream producer or a data stream consumer. As mentioned above, the data stream producer application implements a “protocol generator”. The consuming application implements a data stream deserializer called a “protocol parser”. The source applications hosting protocol generators will compose a block of data, which is held in memory and structured according to the protocol semantics, with the intent to transmit the data to one or more receiving applications. The data has structure in the sense that it exists as a collection of simpler primitive data types where each of the data elements is given a name and sequence to provide useful context and meaning.
The actual binary format of the data being sent will vary based on the specific protocol used. In the case of IEEE C37.118.2-2011 and IEC TR 61850905, data will be structured into logical blocks called “frames”. A frame exists as a serialization of ordered bytes representing the desired data to be transmitted, typically for a given timestamp, where the layout of the frame is organized in a logical fashion to accommodate later deserialization by a protocol parser. The kind of data in the frame determines its type, for example, a “configuration” frame holds meta-data, such as the order and names of measurements being transmitted – and a “data frame” contains measured synchrophasor values in the order specified by the configuration frame, as well as the precise timestamp of measurement for the contained values.
[bookmark: _Toc524510256][bookmark: _Toc530140503][bookmark: _Toc24551547]Checksums
For synchrophasor protocols that are designed to be communication transport neutral, such as IEEE C37.118.2-2011 which can be used over serial and IP, a cyclic redundancy check (CRC) checksum is computed over the frame of data to be transmitted and added to the end of the frame. The synchrophasor protocols often refer to the checksum as a “checkword” since the typical size of the sum is 16-bits, i.e., a “word”. The checksum value is used to validate frame data integrity by the data parser and is particularly useful in detecting transport errors in connectionless data streams, e.g., UDP. It is also useful for serial connections since noise errors can occur during communication making the channel data susceptible to errors. When error correction over a lossy data connection is relegated to the application layer, a protocol-included CRC to check data validity is important.
Even though Internet Protocol already includes checksum values for every data packet, a frame of synchrophasor data can span many IP data packets. While uncommon, IP packets can arrive out of order[footnoteRef:6], in this case the frame-based checksum also allows the protocol parser to detect out of order packets [16]. [6: TCP automatically manages out of order packets, but UDP does not. Out of order packets do not tend to occur very often on intranets with switch-based hub and spoke networks, but are more common on meshed and MPLS networks, i.e., in environments that support and use multi-path, parallel routing [16].]

[bookmark: _Toc524510257][bookmark: _Toc530140504][bookmark: _Toc24551548]Synchronization Bytes
Connectionless transport protocols, like serial and UDP/IP, provide no direct protocol-level support for framing source data[footnoteRef:7]. As a result, the synchrophasor protocols for connectionless transport protocols must be designed so that the start of a frame of data can be recognized. Marking the beginning of a frame is accomplished with a “synchronization byte” (or bytes). A synchronization byte is a generally unique byte[footnoteRef:8] used to orient the protocol parser to the beginning of a frame. Although it is possible for the synchronization byte to appear as part of valid normal data within a data frame, in these cases the protocol parser will determine that this is not the beginning of the frame for other reasons, e.g., an invalid checksum, and then move on to the next synchronization byte to reattempt start-of-frame orientation. [7: If data is already publishing, serial connections can be established anywhere in a stream once connected. UDP/IP can drop packets, so the first data packet received upon connection may not be the first in a frame.] [8: A byte is considered generally unique in context of all the bytes typically sent by the protocol, but not guaranteed to be unique, e.g., p-value < 2%.]

When using TCP/IP, data transfer begins only after a connection has been established. As a result, the first received byte in a data packet will be the synchronization byte and data will remain aligned. From the perspective of the protocol parser using the TCP transport protocol, the synchronization byte is not necessary but is commonly used as additional validation of data alignment.
[bookmark: _Toc524510258][bookmark: _Toc530140505][bookmark: _Toc24551549]Frame Concentration
The IEEE C37.118.2-2011 and IEC TR 61850905 standards define data frames such that the content from multiple frames, e.g., those received from multiple PMUs, can be conflated together for a given timestamp. In this way, once frames of data have arrived from multiple source devices (where all data was measured at a given timestamp) one super frame can be created to hold the data from all sources. The operation of combining frames together for the same timestamp is called “concentration”. The function of concentrating data arriving from distributed locations requires that the system must wait for all expected data to arrive. Since data may never arrive, a timeout must be specified so that operations can eventually continue. This wait timeout is often referred to as the concentration “wait time”[footnoteRef:9]. [9: Some synchrophasor concentrator implementations instead refer to “wait time” as “lag time”. This name is used to harmonize nomenclature with the other common concentration parameter called “lead time” which refers the allowed future-time reasonability validation that occurs when incoming timestamps are compared to the local system clock.]

The functionality of concentration for synchrophasor data is typically handled by a “phasor data concentrator” (PDC) [17]. A PDC requires configuration to specify the incoming synchrophasor data streams that will be concentrated as well as the measurements that will be part of outgoing data streams. Other PDC configuration is also required, such as a concentration wait time value based on the most delayed inputs.
[bookmark: _Ref523990428][bookmark: _Toc524510259][bookmark: _Ref524534496][bookmark: _Toc530140506]The process of concentrating multiple frames together into a compact binary data block can often be an effective and bandwidth efficient way to send large amounts of synchrophasor data. However, as the frames of synchrophasor data become larger, the process of serialization and deserialization becomes costlier in terms of both memory allocation and CPU utilization. Additionally, and importantly, there are also penalties that occur with large frames at the network transport layer.

[bookmark: _Toc24551550]LARGE FRAME IMPACT ON IP
Synchrophasor data is commonly transported over IP using the TCP and UDP transport protocols – both individually and in combination. Deployments that use both protocols simultaneously are characteristically configured such that the reliable TCP channel is used for transmission of commands and configuration and the UDP channel is reserved for transmission of synchrophasor measurement values where some loss can be tolerated.
Regardless of transport protocol, as a contiguous set of data (i.e., a data frame) is sent that is large enough to require fragmentation into multiple IP packets, the loss of any packet requires either the individual packet be resent as the dataset is being assembled or the retransmission of the entire dataset. Continual retransmissions can adversely impact latency and throughput and retransmission of the entire data set is particularly impactful [18]. Continuous transmission of large frames of data over IP causes increased network stress which compounds packet loss [9]. For these reasons, other popular general-purpose data serialization technologies, such as Google Protocol Buffers and Apache Thrift, recommend against the use of large data frames [19] [20].
The adverse impact of large data frames differs based on the high-level protocol being used, e.g., TCP or UDP. Therefore, the selection of an appropriate high-level protocol for a given use case is an important consideration for synchrophasor data transport reliability.
[bookmark: _Toc524510260][bookmark: _Toc530140507][bookmark: _Toc24551551]Large Frame Impacts using TCP
The most common Internet protocol, TCP/IP, creates an index for each network packet being sent for a frame of data and verifies that each packet is successfully delivered. TCP/IP is a “reliable protocol” in that it retransmits packets as many times as needed to assure delivery. However, because retransmission can increase latency, concentration of data frames that timeout can effectively cause the source data to never arrive at its destination.
Since each packet of data for the transmitted frame is sequentially ordered, TCP can fully reconstruct and deliver the original frame once all the packets have arrived. However, continuous streaming of large frames of data causes network hardware supporting TCP to suffer with increased memory allocation and computational burden, increasing data loss and retransmissions, which can lead to network slowdown. One unique distinction for IP based protocols is that at some level these issues will affect every element of the interconnected network infrastructure between the source and sync of the data being exchanged.
Another critical impact that is unique to TCP is that retransmissions of dropped packets can induce cumulative time delays [21], especially as large data frames are published at rapid rates as is the case for synchrophasor data. Time delays are also exacerbated during periods of increased network activity which induces congestion and a higher rate of collisions or buffering – the effects on latency being pernicious. Real-time synchrophasor data must be accurate, dependable, and timely to be useful for grid operators [22].
[bookmark: _Toc524510261][bookmark: _Toc530140508][bookmark: _Toc24551552]Large Frame Impacts on UDP
The other common Internet protocol used for synchrophasor data is UDP/IP. Transmission of data over UDP differs from TCP in that UDP does not retransmit lost packets nor does it make any attempt to maintain the order of the transmitted packets. As such, UDP is considered a lossy data transmission protocol.
Even with the unreliable delivery caveats, UDP is still limited to packet sizes as defined by the MTU. Any packet larger than the MTU size must be fragmented – i.e., split into multiple smaller packets as described in section III. Like the TCP communication protocol, UDP attempts to reconstruct and deliver the originally transmitted frame of data; however, if even a single network packet is dropped, the entire data frame is lost and any packets that were already accumulated are discarded. In other words, there are no partial frame deliveries – frame reception with UDP is an all or nothing operation.
As was described for TCP, use of UDP results in similar stress on network equipment as data frame sizes increase requiring memory allocation and computational processing. The more problematic impact of large data frames with UDP is that the increased number of network packets needed to send a large frame increases the probability of dropping one of the individual packets in the frame. Since the loss of any one packet results in the loss of the entire frame of data, as frame sizes increase so does overall data loss.
[bookmark: _Toc524510262]

[bookmark: _Toc530140509][bookmark: _Toc24551553]IEEE C37.118.2-2011 PROTOCOL OVERVIEW
The 2011 version of the IEEE C37.118 standard, including the later amendment in 2014 to cover performance requirements, is broken into two parts. Part 1 defines the measurement of synchrophasors, frequency, and rate of change of frequency under all operating conditions and it specifies methods for evaluating these measurements and requirements for compliance with the standard under both steady-state and dynamic conditions. Part one also defines requirements for time tags and synchronization.
Part 2 of IEEE C37.118 defines methods for the real-time exchange of synchrophasor data and specifies the messaging format, including message types, contents, and their use. The standard defines a simple and direct method of data transmission using an open access method to facilitate development and use of synchrophasors. It is Part 2 of the IEEE C37.118 standard that is the focus of this document.
[bookmark: _Toc524510263][bookmark: _Toc530140510][bookmark: _Toc24551554]Protocol Summary
The IEEE C37.118.2-2011 standard defines a method for exchange of synchronized phasor measurement data between electronic power system devices. The protocol specifies the messaging structure including types, use, contents, and data formats for real-time communication between PMUs, PDCs, and other applications.
Its simplicity and efficiency help to make the IEEE C37.118.2-2011 standard the most widely used protocol used to exchange synchrophasor data among measurement, data collection, and application equipment – including visualization systems, time-series data historians, PMUs and PDCs.
[bookmark: _Toc524510264][bookmark: _Toc530140511][bookmark: _Toc24551555]Protocol Structure
All data sent or received by the IEEE C37.118.2-2011 protocol is formatted into binary frames. The standard defines four frame types: command frame, configuration frame, data frame and header frame. Each frame type includes a common set of header values.
Common Header - Each of the frame types sent or received by the IEEE C37.118.2-2011 protocol include a common set of values at the start of each frame as shown in the table below:

	Field
	Byte Size
	Description

	SYNC
	2
	Sync byte followed by frame type and version number

	FRAMESIZE
	2
	Number of bytes in frame (UINT16)

	IDCODE
	2
	Stream source ID number (UINT16)

	SOC
	4
	SOC time stamp (UINT32)

	FRACSEC
	4
	Fraction of Second and Message Time Quality

Table 1. Common Header Fields
Command Frame - A command frame is used to control protocol behavior for an IEEE C37.118.2-2011 connection. Unlike other frames which are typically transmitted to a client which is handling protocol parsing, a command frame is sent to a server which will be primarily handling protocol generation. In the context of typical request / reply style communications paradigms, the command frame can be considered a request and all other frames the replies. Examples of available commands include begin transmission of data frames (CMD = 2), stop transmission of data frames (CMD = 1), send a configuration frame (CMD = 5 for CFG-2), and send a header frame (CMD = 3). Below are the elements of a command frame that exist beyond the common header:

	Field
	Byte Size
	Description

	CMD
	2
	Command being sent to the server (PMU/PDC)

	EXTFRAME
	0-65518
	Extended frame data – FRAMESIZE controls length

	CHK
	2
	CRC-CCITT

Table 2. Command Frame Fields
Configuration Frame - A configuration frame in the IEEE C37.118.2-2011 protocol contains information for processing a synchrophasor data stream; this includes the sequence of the data contained in data frames – as a result, a configuration frame must be received and processed by a protocol parser before any data frames can be fully parsed. The standard defines three configuration frame types labeled CFG-1, CFG-2 and CFG-3. The first two configuration frame types, i.e., CFG-1 and CFG-2, are structurally identical – they only differ in usage context. CFG-1 is used to relay all the data that a device has to offer where CFG-2 reports the current active configuration, i.e., what is being reported in the data frames. Consequently, from the perspective of a protocol parser, it is CFG-2 that is required. The last configuration frame type, CFG-3, includes more meta-data information as well as the ability to span multiple frames. CFG-3 is optional, i.e., protocol generators can opt not to implement this frame type – as a result, protocol parsers cannot depend on its existence. Below are the elements of a configuration frame (for CFG-2) that exist beyond the common header:

	
	Field
	Byte Size
	Description

	
	TIME_BASE
	4
	Resolution of FRACSEC time stamp

	
	NUM_PMU
	2
	Number of PMUs in the data frame (UINT16)

	┌
	STN
	16
	Station Name―16 bytes in ASCII format

	│
	IDCODE
	2
	Data source ID identifies source of each data block

	│
	FORMAT
	2
	Data format within the data frame

	│
	PHNMR
	2
	Number of phasors (UINT16)

	│
	ANNMR
	2
	Number of analog values (UINT16)

	│
	DGNMR
	2
	Number of digital status words (UINT16)

	│
│
│
│
│
	CHNAM
	16 × (PHNMR + ANNMR + 16 × DGNMR)
	Phasor and channel names―16 bytes for each phasor, analog, and each digital channel (16 channels in each digital word) in ASCII format in the same order as they are transmitted

	│
	PHUNIT
	4 × PHNMR
	Conversion factor for phasor channels

	│
	ANUNIT
	4 × ANNMR
	Conversion factor for analog channels

	│
	DIGUNIT
	4 × DGNMR
	Mask words for digital status words

	│
	FNOM
	2
	Nominal line frequency code and flags

	└
	CFGCNT
	2
	Configuration change count

	
	Repeat Fields
	
	Repeat fields STN to CFGCNT for NUM_PMU times

	
	DATA_RATE
	2
	Rate of data transmissions

	
	CHK
	2
	CRC-CCITT

Table 3. Configuration Frame (CFG-2) Fields

[bookmark: _Ref527370179]Data Frame - A data frame in the IEEE C37.118.2-2011 protocol is used to transmit synchrophasor measurement data[footnoteRef:10] and a set of status bits for each of the included data blocks. The sequence of items defined in a data frame are outlined in the configuration frame, specifically CFG-2 – as a result, the configuration frame must be received before data frames can begin to be parsed. Below are the elements of a data frame that exist beyond the common header: [10: Phasors can be in polar (angle / magnitude) or rectangular (real / imaginary) format as specified in the FORMAT field in the configuration frame. Angle values are always represented as radians.]

	
	Field
	Byte Size
	Description

	┌
	STAT
	2
	Bit-mapped flags defining current state and quality info

	│
│
│
	PHASORS10
	4 x PHNMR
or
8 x PHNMR
	Phasor estimate value tuple
4-bytes per tuple (2 per value) in scaled integer format
8-bytes per tuple (4 per value) in floating-point format

	│
	FREQ
	2 or 4
	Frequency value (2-bytes scaled / 4-bytes floating-point)

	│
	DFREQ
	2 or 4
	ROCOF value (2-bytes scaled / 4-bytes floating-point)

	│
│
│
	ANALOG
	2 × ANNMR
or
4 x ANNMR
	Analog value
2-bytes per value in scaled integer format
4-bytes per value in floating-point format

	└
	DIGITAL
	2 x DGNMR
	Digital data, 16-bit flags per value

	
	Repeat Fields
	
	Repeat fields STAT to DIGITAL for NUM_PMU times

	
	CHK
	2
	CRC-CCITT

Table 4. Data Frame Fields
Header Frame - The payload for a header frame in the IEEE C37.118.2-2011 protocol is expected to be free-form, human readable information. A header frame is designated to provide ancillary information from a device that is measuring and publishing synchrophasor measurements, e.g., its data sources, filtering algorithms in use, etc. Below are the elements of a header frame that exist beyond the common header:

	Field
	Byte Size
	Description

	CMD
	2
	Command being sent to the server (PMU/PDC)

	EXTFRAME
	0-65518
	Extended frame data – FRAMESIZE controls length

	CHK
	2
	CRC-CCITT

Table 5. Header Frame Fields
[bookmark: _Toc524510265][bookmark: _Toc530140512][bookmark: _Toc24551556]Protocol Timestamp Format
Timestamps in IEEE C37.118.2-2011 are encoded as a 4-byte second-of-century, i.e., the 32-bit SOC value defined in the common header of all frames, and a 24-bit fraction of second, i.e., the lower 24-bits of the 32-bit FRACSEC value as defined in the common header. The second-of-century epoch is UNIX based representing the number of seconds since midnight on 1/1/1970 UTC. For non-data frames, the timestamp used is always provided in whole seconds without any fractional value. For data frames, timestamps include fractional time. Calculation of fractional time requires the use of the time base, i.e., the lower 24-bits of the 32-bit TIME_BASE value defined in the configuration frame. Time, including sub-second fraction, can be calculated using an expression like the following:

Timestamp = SOC + (FRACSEC & 0xFFFFFF) / (TIME_BASE & 0xFFFFFF)

Using the full 24-bits of the available fractional time base, the minimum fractional time interval that can be represented is 59.6 nanoseconds.
[bookmark: _Toc524510267][bookmark: _Toc530140513][bookmark: _Toc24551557]Protocol Security
No native security options are provided in the IEEE C37.118.2-2011 protocol. Since IEEE C37.118 is an application level messaging system, security must be provided by the underlying communications transport used to carry the messages. Some IEEE C37.118 device implementations do enforce a password-like feature such that no responses will be provided for command requests not specifying a matching IDCODE in the header of the provided command frame. However, this is limited to the maximum of 65,536 values per the 16-bit IDCODE field.
In lieu of native security options, some production implementations of IEEE C37.118 needing security have instead opted to deploy a virtual private network (VPN) between sources and syncs needing to exchange data thus creating a secure network tunnel for all network traffic flowing between the two endpoints.
[bookmark: _Toc524510268]Data Integrity - The IEEE C37.118.2-2011 standard employs the use of a CRC-CCITT [1] based checkword in its protocol implementation so that reconstitution of a frame of data at the application layer can be validated even when transported over an unreliable data transport, e.g., UDP or serial. Additionally, to help accommodate protocol parsing alignment when using connectionless transports, IEEE C37.118 also publishes a synchronization byte, i.e., value 0xAA, at the beginning of each of its frames – this is the first byte of the SYNC value defined in the common header of all frames.
[bookmark: _Toc530140514][bookmark: _Toc24551558]Bandwidth Utilization
Application of compression techniques notwithstanding, e.g., those defined in STTP, the raw binary format of IEEE C37.118.2-2011 data frames is the most compact option available for the transmission of synchrophasor measurement data[footnoteRef:11] [23] [24]. In addition, to help send more data over channels with limited bandwidth, e.g., a serial connection, the IEEE C37.118 protocol includes a mode of operation to send scaled integers instead of floating-point values. This mode optimizes payload size at the expense of less data resolution[footnoteRef:12] to further reduce the required communications bandwidth, i.e., transmission of scaled 2-byte 16-bit integer values versus 4-byte 32-bit floating-point values. [11: This assertion assumes that the configuration frame is only sent once per session. In deployments where the configuration frame gets broadcast on a periodic schedule, e.g., once per minute in a unicast only environment, bandwidth utilization will increase.] [12: For PMU devices that use a 16-bit A/D converter for source measurements, the integer-based scaling optimization may result in no loss of precision when scaling factors are properly configured.]

[bookmark: _Toc524510269]

[bookmark: _Toc530140515][bookmark: _Toc24551559]IEC TR 61850905 PROTOCOL OVERVIEW
The 2012 version of the IEC TR 61850905 standard was developed to extend the widely used IEC 61850 communications protocol suite to include normative options for the transmission of synchrophasor data. Use of the IEC TR 61850905 synchrophasor protocol is often a consideration for environments where IEC 61850 is already the primary communications protocol in use, e.g., within a substation, so that tools, processes, and standard naming conventions already provided by IEC 61850 can be leveraged.
The 90-5 technical report addition to IEC 61850 protocol is based on established practice and usage of IEEE C37.118 [25] with added native security options, see IEC 62351. The 90-5 standard focuses on using existing elements of the IEC 61850 protocol stack for publication of synchrophasor data but not on how the data is measured – instead, normative references to IEEE C37.118.1-2011 are included for the handling of synchrophasor metrology.
The 90-5 standard employs use cases to establish the protocol requirements and, building on tools and elements available in the existing IEC 61850 protocol stack, uses modeling to establish logical devices, nodes, and communications [26]. The protocol stack is used to define mappings to common synchrophasor functions, for example, a PMU is mapped to an IEC 61850 MMXU or MSQI logical node, and a PDC is an IEC 61850 proxy-server or gateway. The existing protocol stack is also utilized for the actual transmission of synchrophasor measurements by using IEC 61850 Generic Object-Oriented Substation Event (GOOSE) messages or Sampled Values, both of which now support routable implementations over IP[footnoteRef:13]. [13: IEC 61850 GOOSE and Sample Value broadcasts were previously restricted to a local subnet [25].]

[bookmark: _Toc524510270][bookmark: _Toc530140516][bookmark: _Toc24551560]Protocol Summary
The goal of IEC TR 61850905 is to standardize communications protocols and interfaces for synchrophasor data in environments where IEC 61850 is already deployed, such as a substation, where equipment interoperability can lower equipment acquisition and installation costs.
The availability of standard object models provided through the IEC 61850 protocol is intended to lower substation engineering and design costs by enabling automated system engineering tools and processes and new substation designs. The design of IEC 61850 enables in-substation wireless (no copper wires) communications that will lower substation construction and commissioning costs by reducing or eliminating relay-to-relay wiring.
IEC TR 61850905 adds asset security inherited from IEC 61850 that incorporates the IEC 62351 cyber-security standard and transmits waveform samples in real-time, enabling high-speed data services that can support real-time protection and control actions. Using UDP multicast, IEC TR 61850905 enables the use of single measurements (e.g., CT and PT transducer signals) by many users or devices and applications, which enhances efficiency and redundancy and reduces equipment connection and wiring costs [27].
Devices defined with IEC 61850 also have standard object naming conventions that are self-describing and discoverable by other IEC 61850 devices and controllers – this is expected to reduce the cost and time required for design, specification, configuration, testing, commissioning, and maintenance.
[bookmark: _Toc524510271][bookmark: _Toc530140517][bookmark: _Toc24551561]Protocol Structure
All data sent or received by the IEC TR 61850905 protocol is formatted into binary frames. The 90-5 standard defines an IEC 61850 based implementation for a frame of data on a given session using either GOOSE or Sampled Values, referred to here as a data frame. The 90-5 protocol also allows for native protocol options for defining the configuration, i.e., names and sequences of values defined in a data frame using Substation Control Language (SCL) [26] as described in IEC 61850-6-1. To support transitional environments for synchrophasor implementations wanting to switch to IEC TR 61850905, many 90-5 protocol implementations also support use of the IEEE C37.118.2-2011 configuration frame and a limited set of the IEEE C37.118.2-2011 command frame functionality. Since the configuration and command frames for IEEE C37.118 have been defined prior and describing SCL in detail is beyond the scope of this document, this overview focuses only on the structure of IEC headers and footers and the 90-5 data frame payload.
Sampled Value Tag Encoding - The transport options available for data frames in the IEC TR 61850905 protocol are GOOSE and Sample Values – both of which use ANS.1 Basic Encoding Rules (BER) for serializing a Tag, Length, and Value (TVL) triplet. Serialization of a TVL triplet employs the use of byte-based markers to identify a distinct quantity. These markers are called “tags” and can represent data of any type, e.g., an integer value or a string. The format of the tags is a one-byte value representing the tag’s identification, followed by an encoded tag length representing the length of the value, followed by the actual bytes of the value. The length is encoded using a custom algorithm that operates in an analogous manner to the common 7-bit integer variable length encoding algorithm but optimized for lengths that are less than 128 bytes in size. For example, given an array of bytes to hold the encoded length, “buffer”, an integer-based “length” representing the size of the value to encode and an integer-based current “index” into the buffer, an implementation of the custom TVL triplet tag length encoding algorithm in C could look like the following:

 if (length > 0x7F)
 {
 if (length > 0xFF)
 {
 // 16-bit length value
 buffer[index++] = 0x80 | 2;
 buffer[index++] = (length & 0xFF00) >> 8;
 buffer[index++] = length & 0x00FF;
 }
 else
 {
 // 8-bit length value > 127
 buffer[index++] = 0x80 | 1;
 buffer[index++] = length & 0xFF;
 }
 }
 else
 {
 // 8-bit length value < 128
 buffer[index++] = length & 0xFF;
 }

This algorithm allows a variable length, e.g., the length of a string, to be serialized into 1, 2, or 3 bytes. Since the algorithm’s maximum encoding size, i.e., 3 bytes, is greater than the size it would take to naturally encode a 16-bit integer, i.e., 2 bytes, its use presumes a nominal use-case where lengths are usually expected to be less than 128. For example, lengths are encoded into 1 byte when length values are less than 128 – this represents a serialization size optimization for length-prefixed string encoding if length values are expected to be typically less than 128.
IEC Headers - The IEC TR 61850905 data frame and the associated IEC standard headers are part of an overall IEC 61850 session structure. This structure is more complex and dynamic than the simpler frames defined in IEEE C37.118.2-2011 and hence are larger in size. These IEC structures define a wrapping architecture to allow all the various kinds of IEC 61850 information to be exchanged as payload while simultaneously supporting multiple contexts, security implementations and routing options. Instead of being fixed, the structure is container based and defined as a hierarchy of levels representing layers of implementation that can adjust as needed to accommodate diverse types of data exchanges. Below are the elements that make up the header, applied in the context of a data frame for routable Sampled Value messages (content beyond APDU_LEN would differ for GOOSE[footnoteRef:14]): [14: GOOSE messages are several times larger than those for Sampled Values, so this document focuses on the smaller Sampled Values implementation, especially as it relates to bandwidth comparisons with other protocols.]

	
	
	
	
	Field[footnoteRef:15] [15: The field names presented here are intended to establish an identifiable reference to a sequential point in the IEC TR 61850-90-5 data frame to assist with locally describing structural relationships and repeating data sections. The chosen name does not necessarily match field names otherwise defined in the IEC standard.]

	Byte Size
	Description

	┌
	
	
	
	LI
	1
	Length identifier for Transport Unit (0x01)

	│
└
	
	
	
	TRANS_TYPE
	1
	Transport Unit Type Marker (Connectionless = 0x40)

	
	
	
	
	SESSION_TYPE
	1
	Session Type Marker
(Tunneled = 0xA0, GOOSE = 0xA1,
Sampled Value = 0xA2)

	┌
	
	
	
	LI
	1
	Length Identifier (0x18)

	│
	
	
	
	COM_HDR
	1
	Common Header (0x80)

	│
	┌
	
	
	LI
	1
	Length Identifier (0x16)

	│
	│
	┌
	
	SPDU_LEN
	2
	SPDU Length (UINT16)

	│
	│
	│
	
	SPDU_NO
	2
	SPDU Sequence Number (UINT16)

	│
	│
	│
	
	VERSION
	2
	Version Number (0x01)

	│
	│
	│
	
	KEY_TIME
	4
	UNIX SOC Time of Current Key (UINT32)

	│
	│
	│
	
	NEXT_KEY
	2
	Time of Next Key (UINT16)

	│
│
│
	│
│
│
	│
│
│
	
	SEC_TYPE
	1
	Security Algorithm Type Marker
(None = 0x00, AES128 = 0x01,
AES256 = 0x02)

	│
│
│
│
	│
│
│
│
	│
│
│
│
	
	SIG_TYPE
	1
	Signature Algorithm Type Marker
(None = 0x00, SHA80 = 0x01,
SHA128 = 0x02, SHA256 = 0x03,
AES64 = 0x04, AES128 = 0x05)

	└
	└
	│
	
	KEY_ID
	4
	Index into Key Table (UINT32)

	
	
	│
	┌
	PAYLOAD_LEN
	4
	Length of Payload (UINT32)

	
	
	│
│
	│
│
	PAYLOAD_TYPE
	1
	Payload Type Marker (UINT8)
(GOOSE = 0x81, Sampled Value = 0x82)

	
	
	│
│
	│
│
	SIMULATION
	1
	Simulated Data Marker
(No = 0x00, Yes = 0x01)

	
	
	│
	│
	APPID
	2
	Application ID (UINT16)

	
	
	│
	│
	┌ APDU_LEN
	2
	APDU (Payload) Length (UINT16)

	
	
	│
	│
	│ TAG_SVPDU
	1
	Sampled Value Protocol Tag (0x60)

	[bookmark: _Hlk523410654]
	
	│
	│
	│PAYLOAD_SIZE
	3
	Encoded Payload Size (UINT16)

	
	
	│
	│
	│TAG_NOASDU
	1
	Number of ASDU’s Tag (0x80)

	
	
	│
	│
	│ NOASDU
	2
	Encoded ASDU Count (UINT8)

	
	
	│
	│
	│TAG_SQASDU
	1
	Sequence of ASDU Length Tag (0xA2)

	
	
	│
	│
	│ SEQ _ASDU
	3
	Encoded Sequence Length (UINT16)

	
	
	│
	│
	│ Payload
	
	(See Data Frame)

Table 6. IEC Header Fields

IEC Footers - The IEC footers directly follow the payload as described for a data frame. The footer elements close the hierarchy of containers that remained open in the header before the data frame payload. Below are the elements that make up the footer:

	
	
	
	
	Field
	Byte Size
	Description

	
	
	│
	└
	└ Payload
	
	(See Data Frame)

	
	
	│
	
	SIGNATURE
	1
	Signature Marker (0x85)

	
	
	│
	
	HMAC_LEN
	0 or 2
	HMAC Length (UINT16)

	
	
	└
	
	HMAC
	0 to 33
	Hash-based Message Authentication Code,
Length based on SIG_TYPE:
None = 0, SHA80 = 11, SHA128 = 17,
SHA256 = 33, AES64 = 9, AES128 = 17

Table 7. IEC Footer Fields
[bookmark: _Ref527370592]Data Frame - The data frame of IEC 61850-90-5 is unique in the sense that it can repeat any number of past datasets within the current frame. This capability was added to help reduce overall data loss over a connectionless transport, e.g., UDP, by making sure that the current set of synchrophasor measurements, at timestamp T, can also include one or more earlier sets of measurements, such as, measurements at T - 2 and T - 1. Including past datasets in each frame with a large configuration can negatively impact data quality[footnoteRef:16], however, the number of past datasets to send within each data frame is adjustable through configuration. The current data set, i.e., T - 0, is always the last data set in the frame. [16: Larger frame sizes can have a negative impact on the quality of data transmissions over UDP/IP, see prior section LARGE FRAME IMPACT ON IP. For smaller frame sizes, repetition of past datasets over UDP can have the net effect of reducing overall data loss at the expense of increased bandwidth and processing costs, as incurred due to the need to ignore duplicate data.]

The order of the actual synchrophasor measurement data in a frame of IEC TR 61850-905, regardless of GOOSE or Sampled Value implementation, is structurally in the same order as data defined in the IEEE C37.118.2-2011 protocol. Even though the data is in the same sequence, unlike IEEE C37.118, the data formats are fixed, i.e., all data values are delivered in 32-bit floating-point (no scaled integers) and phasors are in polar format (angle, in degrees[footnoteRef:17], and magnitude value – no imaginary option). Below are the elements that make up the data frame in Sampled Value format: [17: This differs from IEEE C37.118 where polar formatted phasor angles are always represented in radians.]

	
	
	Field
	Byte Size
	Description

	┌
	[bookmark: _Hlk523414430]
	TAG_ASDUSQ
	1
	ASDU Sequence Length Tag (0x30)

	│
	
	ASDU_SEQLEN
	3
	Encoded Sequence Length (UINT16)

	│
	
	TAG_MSVID
	1
	Multicast Sampled Value ID Tag (0x80)

	│
│
	
	MSVID[footnoteRef:18] [18: According to the established implementation agreement for interoperability with IEEE C37.118, the MSVID field will contain an ID code and station name separated by an underscore that will map to the IEEE C37.118 configuration frame IDCODE and STN fields.]

	Variable
	Encoded Length-Prefixed Multicast
Sampled Value Identifier (STRING)

	│
	
	TAG_SMPCNT
	1
	Sample Count Tag (0x82)

	│
	
	SAMPLE_CNT
	3
	Encoded Sample Count (UINT16)

	│
	
	TAG_CONFREV
	1
	Configuration Revision Tag (0x83)

	│
	
	CONF_REV
	3
	Encoded Configuration Revision (UINT16)

	│
	
	TAG_REFRTM
	1
	Refresh Timestamp Tag (0x84)

	│
	
	REFR_TM
	9
	Encoded Refresh Timestamp (UINT64)

	│
	
	TAG_SMPSYNC
	1
	Sample Synchronized Tag (0x85)

	│
	
	SMP_SYNC
	2
	Encoded Sample Synchronized (UINT8)

	│
│
	┌
│
	STAT
	2
	Bit-mapped flags defining current
 state and quality info

	│
│
	│
│
	PHASORS
	8 x PHNMR
	Phasor estimate value 2-part tuple
8-bytes per tuple (4-bytes per value)

	│
	│
	FREQ
	4
	Frequency value

	│
	│
	DFREQ
	4
	ROCOF value

	│
	│
	ANALOG
	4 x ANNMR
	Analog value (4-bytes per value)

	│
	└
	DIGITAL
	2 x DGNMR
	Digital data, 16-bit flags per value

	[bookmark: _Hlk523414566]└
	
	Repeat Fields
	
	Repeat fields STAT to DIGITAL for NUM_PMU times

	
	
	Repeat Fields
	
	Repeat fields TAG_ASDUSQ to DIGITAL for NOASDU times (i.e., repeat for each included past data set plus the current one)

Table 8. 90-5 Data Frame Fields
[bookmark: _Toc524510272][bookmark: _Toc530140518][bookmark: _Toc24551562]Protocol Timestamp Format
Timestamps in IEC TR 61850905 are encoded as a 4-byte second-of-century, i.e., the higher 32-bits of the 64-bit REFR_TM value defined in the data frame, and a 24-bit fraction of second, i.e., the lower 24-bits of the 64-bit REFR_TM value – the remaining 8-bits are reserved for time-quality flags. The second-of-century epoch is UNIX based representing the number of seconds since midnight on 1/1/1970 UTC. Calculation of fractional time in 90-5 uses a constant divisor value of 16,777,216. Time, including sub-second fraction, can be calculated using an expression like the following:

Timestamp = (REFR_TM & 0xFFFFFFFF00000000) +
(REFR_TM & 0x00000000FFFFFF00) / 16777216

The minimum fractional time interval that can be represented is 59.6 nanoseconds.
[bookmark: _Toc524510274][bookmark: _Toc530140519][bookmark: _Toc24551563]Protocol Security
The IEC TR 61850905 standard works with the pre-existing IEC 61850 security options, as defined in IEC 62351-9, to allow the secure transport of synchrophasor measurements. The security options make use of digital signatures, exchanged between authenticated parties, to ensure only authenticated users have access to the desired data and specifies the use of the Group Domain of Interpretation (GDOI) protocol[footnoteRef:19] to handle distributed security with UDP multicast with group authentication of broadcast packets using the shared, group key. [19: For more information on the GDOI protocol see RFC 3547 and RFC 6407.]

When two parties have already authenticated and exchanged keys using native 61850 security options[footnoteRef:20], the appropriate key, as referenced by the KEY_ID field in the IEC headers, will be used to decrypt the payload contents defined in the data frame. This implementation works to protect streaming data even in UDP multicast environments where any recipient can use standard multicast mechanisms to receive a stream of the synchrophasor data but must properly authenticate and receive the needed keys from the publishing source (or its proxy) before the data can be decrypted. [20: This is normally handled with the use of a group controller / key server, also known as a key distribution center (KDC), used to provide symmetric key coordination between multiple parties, e.g., publishers and subscribers.]

Data Integrity - The IEC TR 61850905 standard optionally employs the use of a Hash-based Message Authentication Code (HMAC) style checksum in its protocol implementation so that reconstitution of a frame of data at the application layer can be validated when transported over an unreliable data transport, e.g., UDP. Several variants of HMAC algorithms are supported to accommodate the desired balance between accuracy of the checksum and cost of the calculation.
The 90-5 protocol does not specifically dedicate a common synchronization byte in its IEC headers, however, the first byte of any header should be a length indicator (LI) for the type of transport unit marker that follows – which will always be 1 byte. As a result, the first LI will always be 0x01 and this value is immediately followed by the connectionless transport unit marker of 0x40 – these values, in sequence, can be used in lieu of a specified synchronization byte and be searched to help find the start of a data frame when establishing a new parsing session over a lossy protocol. Since many implementations of 90-5 also have transitional support for IEEE C37.118 configuration and command frames, the synchronization byte of 0xAA can be used as well when searching for these frame types.
[bookmark: _Toc524510275][bookmark: _Toc530140520][bookmark: _Toc24551564]Bandwidth Utilization
Compared to IEEE C37.118.2-2011, the IEC standard headers add overhead that increase overall bandwidth requirements for IEC TR 61850905 data frames [23] [28]. The IEC header in 90-5 is 45 bytes; then, each data frame contains a prefix of an additional 45 or more bytes before the actual synchrophasor data begins. Moreover, when the feature to repeat past data sets within the current frame is enabled, frame size will grow by data frame size with the configured NOASDU value as the coefficient – which tends to be quixotic for any sizable dataset16. Accordingly, enabling use of multiple prior ADSU data sets per frame should only be considered for smaller synchrophasor measurement sets. However, the common deployment use case for 90-5, where the protocol is utilized in a substation within a larger existing IEC 61850 ecosystem, typically already represents a limited, smaller synchrophasor measurement footprint – as such, enabling the prior data set feature in environments with smaller data sets could yield the functionality’s original intention of reduced data loss under ideal network conditions at the cost of increased bandwidth.
[bookmark: _Toc524510276][bookmark: _Toc530140521][bookmark: _Toc24551565]STTP PROTOCOL OVERVIEW
The Streaming Telemetry Transport Protocol (STTP) is being developed under the DOE Advanced Synchrophasor Protocol (ASP) Development and Demonstration Project (DE-OE0000859). This two-year project began on May 1, 2017 and includes 25 collaborators with the objective to document and demonstrate STTP and to work with standards bodies to put STTP on a track for consideration as a standard protocol.
The proposal to DOE for the ASP project argued that a new standard protocol is needed to overcome the issues being encountered in large-scale synchrophasor data system deployments using existing protocols – specifically with issues of scalability, data loss, bandwidth utilization, data access control, transport security options and cost of configuration management.
STTP leverages the successful design elements of Gateway Exchange Protocol (GEP) that was developed under DOE funded Secure Information Exchange Gateway (SIEGate) Project (DE-OE0000536). GEP was developed for the secure exchange of data necessary to support real-time (i.e., current day) grid operations. The real-time data exchange requirement includes synchrophasor data, SCADA data and file-based data. Although GEP is open source with a permissive license[footnoteRef:21] and is widely used by utilities, multi-vendor adoption has been slow. Moreover, regardless of benefits, GEP is not a standard, just an open protocol. Through the ASP project, STTP will build on GEP’s successful features and is on track to become a new standard, IEEE 2664. [21: SIEGate and the GEP protocol are licensed using the MIT license, a short and simple vendor permissive license with conditions only requiring preservation of copyright and license notices.]

[bookmark: _Toc524510277][bookmark: _Toc530140522][bookmark: _Toc24551566]Protocol Summary
STTP is a data measurement centric, publish/subscribe transport protocol that can be used to securely exchange time-series style data and synchronize metadata among applications. The protocol supports sending real-time and historical data at full or down-sampled resolutions. When sending historical data, the replay speed can be controlled dynamically for use in visualizations to enable users to see data faster or slower than recorded in real-time.
The wire protocol defined by STTP is targeted for packet-based transport protocols, specifically Internet Protocol. STTP implements a publish/subscribe data exchange model using simple commands with a compressed binary serialization of data points. The protocol does not require a predefined or fixed configuration - that is, the identifiable data point values arriving in one data packet can be different than those arriving in another. Each packet of measurement data consists of a collection of data values where each value is defined by a compact structure containing an identifier; a timestamp or sequence index; a value; and any associated asset state or data quality flags.
STTP is implemented using two different communication channels. STTP calls the first the “command channel” and the second the “data channel”. In IP based communication, each of these channels is handled by one or more IP endpoints for sending and receiving data (called a “socket”) where the IP transport protocols for these channels can vary based on need. The two most common configurations are: (1) a single TCP transport for both the command and data channel, i.e., traffic for both channels share the same socket, and (2) a TCP based command channel with a UDP based data channel.
The command channel is used to reliably negotiate session specific required communication, state, and protocol parameters. The command channel is also used to manage authentication with other STTP instances, exchange metadata on available data points, and request specific data points for subscription. The data channel is primarily used to send compact, binary encoded packets of data points.
[bookmark: _Toc524510278][bookmark: _Toc530140523][bookmark: _Toc24551567]Protocol Structure
Since at the time of writing development of STTP is still a work in progress, some of the serialization details described here may differ from those published when the protocol specification is complete[footnoteRef:22]. Furthermore, the process of STTP standardization, through the IEEE P10 working group for P2664, is certain to result in changes to the specification as the group of collaborators expand as part of the standardization process. However, the fundamental invariable tenets of STTP, based on the successful design elements of GEP, are well defined and production-proven. These are: [22: Documentation is focused on serialization details of the beta deliverable of STTP which still closely match those of GEP. However, many protocol improvements are expected that could affect serialization, see the current STTP specification document and test implementation for more information: https://github.com/sttp/.]

Simple command and response architecture
Publisher capability to control both data and metadata accessibility for individual subscribers at the measurement level
Subscribers limited to only the data and metadata they are authorized to receive
High-volume, high-speed, compact transfer of time-series data from publisher to subscriber with minimal loss through controlled packet sizing
Ability to encrypt data, specific to subscriber, and use rotating keys
All STTP protocol traffic is composed of simple commands and responses that can each optionally carry a payload. Typically, a subscriber will issue commands and a publisher will answer with responses. Commands from the subscriber include a command type, an optional payload length and optional payload bytes. Responses from the publisher include a response type, an in-response-to command type, optional payload length and optional payload bytes. Often the response type will simply indicate success or failure with an associated message, otherwise the response type will indicate that a specific payload format is in use, e.g., a data packet.
Payloads with Strings - Some of the payloads of command and response messages will be a string or will contain strings. In STTP, all strings are encoded in natural order from left to right, using the character encoding method established in the initial DEFINE OPERATIONAL MODES command, e.g., UTF8 or UTF-16, see Table 10. STTP Command Types.
STTP Commands - The subscriber command message consists of a command type, an optional payload length, and any payload bytes. The elements that make up the STTP command message are described in the table below:

	Field
	Byte Size
	Description

	COMMAND TYPE
	1
	Command type – see Table 10. STTP Command Types

	PAYLOAD LENGTH
	0 or 4
	Number of bytes of payload, if specified
command type includes payload (INT32)

	PAYLOAD
	VARIABLE
	Actual bytes of payload, if any

Table 9. STTP Command Message Fields
The STTP command message types that can be sent by a subscriber and received by a publisher are shown below in Table 10. STTP Command Types. Note that after sending a solicited command message to the publisher, the subscriber will normally receive a SUCCEEDED or FAILED response message along with an associated message in the payload, i.e., a string of text, detailing the success or failure of the command operation. The payload type for other response successes will be based on the response type. For example, the publisher response for a successful METADATA REFRESH command will be a serialized dataset of the available publisher metadata specifically allowed for the subscriber. The payload content for failed responses will always be a string of text representing the error message. Many command types also require a payload which is specific to the requested command, these are described in APPENDIX C – STTP COMMAND PAYLOADS.

	Command
	Type
	Description
	Payload

	METADATA REFRESH
	0x01
	Requests that the publisher send an updated set of metadata so that the subscriber can update its dataset. The successful response message type is a dataset containing the server device and measurement metadata. Devices and measurements contain GUIDs that are used to uniquely identify metadata in local repository allowing datasets to be merged as received from multiple subscriptions.
	Optional

	SUBSCRIBE
	0x02
	Requests a subscription of streaming data from the publisher based on a provided connection string. The connection string contains parameters that specify the desired measurements and control if the subscription is for real-time or historical data, when supported. It is not necessary to stop an existing subscription before requesting a new one. The successful response is a message indicating the total number of allowed measurements. Upon successful subscription the subscriber will also receive an UPDATE SIGNAL INDEX CACHE response that will allow parsing of newly subscribed measurement data.
	Yes

	UNSUBSCRIBE
	0x03
	Requests that the publisher stop sending streaming data to the subscriber. This command cancels the current subscription.
	No

	ROTATE CIPHER KEYS
	0x04
	Requests that the publisher send a new set of cipher keys for encryption of information transmitted on the data channel. The response will include two keys (an old one and a new one) to accommodate any time-slew with transitioning from one key to another. To protect symmetric key exchange, this command should only be used in conjunction with a TLS-based command channel.
	No

	UPDATE PROCESSING INTERVAL
	0x05
	Requests that the publisher update its historical data replay processing interval with the specified value in milliseconds – this only applies for a subscription setup to replay historical data, not to a real-time stream. Except for the values of -1 and 0, this value specifies the desired processing interval for data, i.e., basically a delay, or timer interval, over which to process data. A value of -1 means to use the default processing interval while a value of 0 means to process data as fast as possible.
	Yes

	DEFINE OPERATIONAL MODES
	0x06
	Defines the protocol version and operational modes for a subscriber connection. As soon as a connection with a publisher is established, this command defines the server operational modes used for subscriber and publisher communication (e.g., compression options or text encoding style). This command can only be used only once per connection and must the first command to be sent by the subscriber to the publisher.
	Yes

	CONFIRM NOTIFICATION
	0x07
	This command is sent to a publisher to confirm that a NOTIFY response was received. This is used to verify delivery of critical messages from publisher to subscriber, e.g., a control operation.
	Yes

	CONFIRM BUFFER BLOCK
	0x08
	This command is sent to a publisher to confirm that a BUFFER BLOCK response was received. This is used to verify delivery of a data blocks that may require continuity and sequencing, e.g., a file data block.
	Yes

[bookmark: _Ref523998979]Table 10. STTP Command Types
STTP Responses - The publisher response message consists of a response type, an in-response-to command type, payload length and actual payload bytes. The in-response-to command type is required even if the response is unsolicited. In Table 11 below the elements that make up the response message are described:

	Field
	Byte Size
	Description

	RESPONSE TYPE
	1
	Response type – see Table 12. STTP Response Types

	IN RESPONSE TO COMMAND TYPE
	1
	The in-response-to command type – see
Table 10. STTP Command Types

	PAYLOAD LENGTH
	0 or 4
	Number of bytes of payload, if specified
response type includes payload (INT32)

	PAYLOAD
	VARIABLE
	Actual bytes of payload, if any

Table 11. STTP Response Message Fields
The size of the payload, if any, are specific to the response type. For example, in the case of a data packet response, the payload will contain serialized measurements. Although the subscriber commands and publisher responses will be on two different paths, the value code used for response types are defined as distinct from those used for command types to make it easier to identify values from a wire analysis. Normally response messages are issued in response to subscriber commands, however, they may also act like commands sent by the publisher to the subscriber that were not necessarily solicited – regardless, they are still referred to here as responses for clarity in communicating data flow direction. Many response types also require a payload which is specific to the specified response, these are described in APPENDIX D – STTP RESPONSE PAYLOADS.

	[bookmark: _Ref524341972]Response
	Type
	Description
	Payload

	SUCCEEDED
	0x80
	Informs the client that its solicited server command succeeded, a success message payload follows.
	Yes

	FAILED
	0x81
	Informs the client that its solicited server command failed, a failure message payload follows.
	Yes

	DATA PACKET
	0x82
	Informs the client that a data packet follows.
	Yes

	UPDATE SIGNAL INDEX CACHE
	0x83
	Requests that the client update its runtime signal index cache with the one that follows.
	Yes

	UPDATE BASE TIMES
	0x84
	Requests that client update its runtime base-timestamp offsets with those that follow.
	Yes

	UPDATE CIPHER KEYS
	0x85
	Requests the client update its runtime symmetric encryption keys with those that follow and use the keys to decrypt data. This only applicable when the data channel is using a UDP socket. Keys should only be transferred used in conjunction with a TLS-based command channel.
	Yes

	DATA START TIME
	0x86
	Provides the start time of data being processed from the first measurement.
	Yes

	PROCESSING COMPLETE
	0x87
	Provides notification that historical replay processing has completed, established with via temporal constraints parameters, i.e., StartTimeContraint and StopTimeConstraint connection string parameters.
	No

	BUFFER BLOCK
	0x88
	Informs the subscriber of a buffer block (included in payload). This works with a specially defined measurement, still requiring subscription, that allows a free form transfer of data that does not conform to a time-series value. Data in block must still be partitioned to fit within a minimal number of network packets. Subscriber will be required to acknowledge reception of BUFFER BLOCK with a CONFIRM BUFFER BLOCK command since blocks may exist as a sequence of packets and require retransmission when used over a lossy communications transport, e.g., UDP.
	Yes

	NOTIFY
	0x89
	Informs the subscriber of a critical notification (included in payload). This works with a specially defined measurement, still requiring subscription, that allows subscriber to receive messages with verified delivery. Since message is considered critical, subscriber must respond with a CONFIRM NOTIFICATION command since message may require retransmission when used over a lossy communications transport, e.g., UDP.
	Yes

	CONFIGURATION CHANGED
	0x8A
	Provides a notification that the publisher's source configuration has changed, and that client should make a request to refresh metadata.
	No

	NO OP
	0xFF
	Informs the subscriber that communications channel is still active. Since it is possible for the command channel to remain quiet for some time, this command allows a periodic test of continued connectivity.
	No

[bookmark: _Ref524534836]Table 12. STTP Response Types
[bookmark: _Ref524360847][bookmark: _Toc524510279][bookmark: _Toc530140524][bookmark: _Toc24551568] Protocol Timestamp Format
Timestamps in STTP are encoded as a 64-bit integer representing the number of 100-nanosecond intervals since 0/0/0001, often referred to as a tick. This provides a very high-resolution timestamp, accurate to one ten-millionth of a second with a long year-range, specifically: 00:00:00.0000000 UTC, January 1, 0001 to 23:59:59.9999999 UTC, December 31, 9999, exactly one 100-nanosecond tick before 00:00:00.0000000 UTC, January 1, 10,000 – Gregorian calendar. The 64-bit timestamp is rarely transmitted in its full form since most of the bits representing the time change slowly, see STTP Data Compression.
[bookmark: _Toc524510280][bookmark: _Toc530140525][bookmark: _Toc24551569]Protocol Security
STTP requires the use of a TCP-based command channel for actions such as a subscription. The TCP-based command channel is used to reliably negotiate session specific required communication, state, and protocol parameters. It is also used to authenticate with other STTP communications appliances, exchange metadata on points and request points for subscription. This same channel is also used to apply transport layer security (TLS) for publisher/subscriber authentication using public-key cryptography and secure communications. TLS uses X.509 identity certificates for authentication, strong identity verification and encryption. STTP publishers can use a locally accessible subscriber certificate to validate the identity of a subscriber connection, this can be done in conjunction with a mutually trusted certificate authority or managed privately.
STTP is configurable to allow use of private, i.e., self-signed, certificates in highly isolated environments. In the absence of key management infrastructure, such as deployments with no Internet access or mutually accessible certificate authority, STTP can use self-signed X.509 identity certificates that are securely exchanged between publisher and subscriber, out-of-band, i.e., not on the same communications channel used for data exchange.
When the data is optionally enabled over a UDP socket, the data transmitted on this channel can be encrypted using symmetric encryption keys that are dynamically exchanged over the existing TLS secured TCP-based command channel. When UDP is not used, the data channel information is transmitted over the existing command channel TCP socket.
STTP also incorporates access control at the measurement level. Subscriptions allow for dynamic data and metadata exchange with availability change notifications and the ability to automatically update streaming data values. However, all data and metadata available to a subscriber are subject to publisher discretion and can be changed even when a subscription is active. Although STTP can be configured without its security features enabled, the publisher can always decide if it will allow unsecured connections or data access to unrecognized subscribers. Applications implementing STTP publisher functionality will need to log changes to configuration and administrative actions, which includes data access control, to facilitate compliance with the North American Electric Reliability Corporation (NERC) CIP standards.
Although STTP can be used over a VPN tunnel to provide security, there may be benefits in many deployments to directly using a TLS implementation instead. For one, in order for a publisher to strongly validate the identity of a subscriber, an X.509 certificate will be required even if a VPN tunnel is used to exchange data. As seen in Table 13 - Comparison of STTP / VPN to STTP / TLS Security below, STTP over TLS is an alternative to the use of VPN for securing the transfer of streaming utility operating data.

	STTP / VPN APPROACH
	STTP / TLS APPROACH

	Security managed at the network interface level
	Security managed at the application layer with flexible pairwise, i.e., per publisher / subscriber, security

	Traffic protected only if it reaches the VPN tunnel – susceptible at previous levels
	Traffic is encrypted from source minimizing internal exposure

	VPN failure can result in (1) unencrypted data flows, or (2) failure of data flows
	Connection failure results in automatic retries, renegotiating keys at each attempt

	Network issues may require human intervention to restart data flows
	Network issues cause data flows to be automatically reestablished

[bookmark: _Ref523496279][bookmark: _Ref524356908]Table 13 - Comparison of STTP / VPN to STTP / TLS Security
Data Integrity - Unlike the IEEE C37.118.2-2011 and IEC TR 61850-90-5 standards which employ the use of an additional checksum in their protocol implementation, STTP, which is only designed for IP based transport, does not include checksums in its payload since, (1) checksums are already applied at the IP transport layer, and, (2) because payload sizes are targeted to fit within a minimal number of data packets, ideally just one. Since STTP is an IP only protocol and existing data packet checksums are already validated by operating system IP implementations, no extra time or space is allocated to an additional application layer checksum value.
[bookmark: _Toc524510281][bookmark: _Toc530140526][bookmark: _Toc24551570]Bandwidth Utilization
Compared to frame-based protocols which include a single timestamp per frame of simultaneously measured data and define a fixed order to identify measurements, the raw binary format for an equivalent group of STTP measurements, where each serialized measurement has its own timestamp and identification, will be always larger. However, production deployments of STTP never send data in a raw binary form, instead, data is always compressed before transmission. Compression techniques result in TCP based deployments being smaller than IEEE C37.118.2.2011 and UDP based deployments being on-par with IEC TR 61850-90-5 deployments.
[bookmark: _Ref524534301][bookmark: _Toc530140527][bookmark: _Toc24551571]STTP Data Compression
Synchrophasor data is comprised of periodic measurements that are recorded at a data sampling rate that is sufficiently high to infer the gradient of change of this data, as such, synchrophasor data is a suitable candidate for compression. Compression algorithms are typically classified into two categories, “lossless” and “lossy”.
As their names infer, lossless compression allows reconstruction, i.e., “inflation”, of the compressed data back to the original source data with full fidelity; whereas inflation of data compressed using a lossy compression algorithm will produce data that is only an approximation of the original data. In terms of computational costs, lossy compression is typically less expensive than lossless compression.
The field of computer science is replete with algorithms for data compression, lossless and lossy, each of which offer tradeoffs in the needed time required to compute the greatest reduction in size. The more CPU time that can be invested into the computation, the better the size reduction; however, the results from increased time investment are non-linear and subject to diminishing returns. Since synchrophasor data is recorded at a high sampling rate and any additional computational activity, like compression, will subsequently increase delivery latency, the available time investment for compression is small and any selected algorithm must be fast and computationally inexpensive.
Although use-cases could be envisioned where a lossy compression algorithm could be tolerated, STTP instead always uses a lossless compression algorithm so that the original data is retained in its full fidelity. The choice of the best lossless compression algorithm to apply depends on the nature of the transmission protocol selected.
When a TCP socket is being used for data channel traffic, it can be assumed that there will be no data packets dropped over a given connection between a publisher and subscriber, as a result, a compression algorithm that works across a longer window of gradually changing waveform data can be selected. When a UDP socket is being used for data channel traffic, the lossless compression algorithm will have no choice but to focus on compression of the data for an individual packet, not across multiple packets – this is because with UDP, packets can be dropped and the process of lossless inflation of compressed data with common algorithms does not tolerate loss.
An additional compression issue exists with attempting to optimize data packet utilization. With the target compressed size being one network data packet, there can be complications with trying to estimate and balance the total amount of uncompressed source data that will to go into a single compressed data packet as compression ratios depend entirely on the compressibility of the source data with selected compression algorithm. This is often less of a concern for TCP since compressed source data can be easily partitioned into the desired target data packets, but for UDP, the choice is to instead take a conservative approach and try to minimize the number of target frames based on typical compression ratios for the target data and given number of source measurements.
[bookmark: _Toc530140528]STTP TCP Compression
The current compression algorithm developed for STTP when used over TCP is called Time Series Special Compression (TSSC). Although this is the current compression algorithm in use, it is expected that new algorithms may be developed in the future with better applicability for given use cases, as such STTP requires the flexibility to accommodate new algorithms that can be specified and negotiated when a connection is established without requiring changes to the protocol, see Define Operational Modes Command Payload.
Since STTP can transport most any kind of data, applying a compression algorithm that is used for general purpose data might seem ideal. However, most commonly available lossless streaming compression algorithms, e.g., LZ4, tend to perform worse than simply applying the ubiquitous Gzip algorithm over a single data packet. However, with a little insight into the data being processed it is possible to apply streaming compression rules to specific data elements longitudinally and, based on the nature of the data, produce exceptionally good compression ratios with minimal CPU impact.
TSSC takes each of the elements of a data packet, see Data Packet Response Payload, and handles each data type with separate compression algorithms, creating parallel compression streams for each data element in the data packet. The nature of the data element being compressed then infers the necessary compression algorithm tuning to produce the best results. As an example, with a typical subscription, timestamps tend to be near each other, normally varying by no more than a few seconds. For the 64-bit timestamps in STTP, this means the data variation may only occur in the bottom 16 of the total 64 bits of the timestamp. With the bulk of the bits repeating invariably, the total bit set needs to be only transmitted once or on substantial change, then only the changing bits need to be sent. Additionally, if the timestamps vary less, the algorithm can automatically adjust and send even fewer bits. This same type of pattern works well for identification numbers, which are finite in number, and state flags, which vary little. Data values, however, need special attention.
Data value elements for a given data packet can seem to be quite random, however, many values change slowly over time, from packet to packet. For example, a measured frequency value tends to change only incrementally over several data packets; in fact, other frequencies in the same subscription may only differ by just a few bits. With this knowledge a table of various base values can be maintained that represent the unvarying bits of many types of measurements. Now only the changed bit values need to be encoded into the stream with enough detail, such as which table entry to use, so that the stream can be losslessly reinflated upon reception.
The actual data going in the data packet payload will now be a chunk of the compressed data stream instead of individual serialized measurements as described in the Data Packet Response Payload. The STTP API will simply now target chunk sizes to meet configured maximum packet size, still fragmenting at the application layer to eliminate the need for buffer reconstruction at the network layer thereby reducing latency.
In practice for synchrophasor data this algorithm has negligible impact on memory and CPU and produces data compression that reduces STTP bandwidth consumption to less than that required by IEEE C37.118 for the same data. However, since the algorithm depends on the evolving states of data over time it can tolerate no intermediate data loss, so a TCP data transport channel is required to use this algorithm.
[bookmark: _Toc530140529]STTP UDP Compression
Using UDP for data transmission means the possibility exists for data packet loss and, at present, lossless compression algorithms do operate with this caveat. Consequently, the current best option is to apply compression over an individual data packet, ignoring gains that might be acquired over several packets. However, since compressed data is expected to be smaller than the source data, some tuning can go into how much source data can be used to create the configured maximum packet size.
The current algorithm used for STTP over UDP is the common Gzip algorithm. Application of the compression takes the simple approach of serializing the data packets as normal, see Data Packet Response Payload, then applying Gzip compression over the payload. In practice for synchrophasor data this algorithm has minimal impact on memory and CPU and produces data compression that reduces overall STTP bandwidth consumption; however, even after compression the size is still more than required by IEEE C37.118 for the same data, although comparable to IEC TR 61850-90-5.
The current simple Gzip compression operation does not produce the notable results like those seen with TSSC. However, since a TCP based command channel is always available with STTP, it is likely that a variation of the TSSC algorithm, using a persistent compression table maintained reliably over the command channel, could be developed to produce much better compression ratios when using UDP, perhaps on par with those seen in a TCP only connection.

[bookmark: _Toc530140530][bookmark: _Toc24551572]PLANNED TESTING
Bench testing by project participants of the three protocols is planned as part of the ASP project in early 2019. The tests will be conducted on a common set of hardware with a private network. Tests will be executed for scalability, data loss and performance in terms of bandwidth utilization, CPU loading and memory impact. Where necessary, such as with tests for data loss, varying levels of network traffic will be induced on the private network to simulate loading conditions that normally exist in heterogenous IP networks treated as a shared resource. An open source load generator will be used for this testing.
Scalability Testing - Scalability will test maximum data throughput for all protocols, on their own terms, and measure impact on CPU and memory. For example, a nominally sized PMU will be used with IEEE C37.118 to test 10, 100 and the maximum number of PMUs that will fit into a frame and still operate reliably. IEC 61850-90-5 will do the same test, but for varying numbers of ASDU counts (i.e., protocol-specific feature that includes past data sets for current frame in an attempt stave off data loss) from 0 to 4 – note that the maximum number of PMUs will go down per increase in ASDU. STTP will be tested for the same nominally sized PMUs, at comparable scales, but also continuing to increase scale until hardware limitations prevent further reliable throughput.
Ignoring size limitations on the IEEE C37.118 configuration frame 2, because the optional configuration frame 3 can span multiple frames, limits for a data frame of IEEE C37.118 and IEC TR 61850-90-5 are restricted to 65K bytes. As a result, conclusions similar to the indications found in PeakRC testing [24] of GEP and IEEE C37.118 is expected once tests are complete, specifically that STTP will scale to hardware limits, typically 3-5 million points per second depending on hardware, but the 65K limit on IEEE C37.118 and IEC TR 61850-90-5 frames limit data throughput to no more than ~200,000 points per second.
CPU / memory comparisons for all protocols will use the smallest number in the set of max-number of nominally sized PMUs that can be supported by each protocol, as discovered per testing, and compare impacts. As part of scalability testing, comparisons should highlight impacts of STTP compression on memory and CPU loading. Conclusions like the results found in PeakRC testing are expected once tests are complete, specifically that compression does not adversely affect CPU or memory loading.
Data Loss Testing - Data losses will be tested using both TCP only and TCP with UDP. Including TCP only may seem unnecessary since no data loss is expected, however, previous tests with PeakRC have shown that losses over TCP can still be incurred because of failure to receive all expected data in a configured wait-time – as time allows, multiple TCP tests with varying wait-times will be executed to show the level at which wait-time lengths produce no loss.
UDP tests are expected to highlight data loss minimization effectiveness of STTP. All tests will be executed with varying pre-existing network loads ranging from 0% to 90%. Multiple tests will be executed for varying scalability options – at a minimum three representative tests for small (10 PMUs), medium (50 PMUs) and large (200 PMUs) infrastructures. A traffic impact test of data loss for STTP will also be conducted to show how preexisting network loads affect STTP scale and overall loss (UDP only).
Efficiency Testing - Bandwidth utilization will be tested using both TCP only and TCP with UDP. In the case of TCP only, STTP compression options show bandwidth performance benefits over IEEE C37.118. Conclusions similar to the results found in PeakRC testing are expected once tests are complete, specifically that when compression is enabled, STTP over UDP is expected to perform worse, ~1.8x, than IEEE C37.118, but on par with IEC TR 61850-90-5; and STTP over TCP is expected to perform better that IEEE C37.118, a ~30% reduction.
Virtual Machine Testing - In addition to the tests that will be executed on standalone machines, a subset of the tests, specifically related to scalability and data loss, will also be run on virtual machines (VMs) to ascertain the impact that this technology can have on these protocols. As VMs are a quite common deployment option for IT environments, these tests will highlight any possible negative impacts VMs can have on the reliable transmission of synchrophasor data. VM testing will execute on host hardware where other active VMs will be varied in number and CPU loading on the same host machine.

[bookmark: _Toc524510284][bookmark: _Toc524514733][bookmark: _Toc530140531][bookmark: _Toc24551573]COMPARISON CONCLUSIONS
This section includes data from the PeakRC testing that compared IEEE C37.118 and GEP, using TCP and UDP, that was conducted in September of 2016 [24]. Testing was conducted at Peak Reliability (PeakRC) in the Vancouver and Loveland operations centers. To simulate a range of operating conditions, the performance of the protocols was evaluated at three data volumes: (1) small scale – simulating a phasor data flow from one of PeakRC’s smaller phasor data contributors, (2) medium scale – simulating a phasor data flow from one of PeakRC’s bigger phasor data contributors, and (3) large scale – the aggregated PeakRC synchrophasor data stream from all its members. To assure that the protocols were evaluated under identical conditions, all tests were executed simultaneously, side-by-side. Multiple 2-hour tests were run for each data volume to verify that the results were repeatable.
[bookmark: _Toc530140532][bookmark: _Toc24551574]Structure
The IEEE C37.118.2-2011 and IEC TR 61850-90-5 are frame based. While efficient at all data volumes and effective with small data volumes, when used at scale (e.g., for systems involving hundreds of PMUs) the frame-based nature of these protocols present network design and operational challenges that the protocols were never designed to handle. Large frame sizes can also have adverse effects on data completeness; as more devices are concentrated into a single frame of data, the larger frame sizes contribute to higher overall data losses.
STTP is measurement based without a fixed configuration, i.e., the identifiable data arriving in one packet of STTP data will differ from the identifiable data arriving in the next packet and timestamps of data included within a data packet are not necessarily time-aligned. With STTP, data is partitioned at the application layer to minimize network fragmentation at the communications layer. Ideally the number of values sent per partitioned data packet are the total that will conveniently fit into one network packet, i.e., MTU size minus required headers. By reducing network fragmentation, the loss of a single packet over UDP does not constitute the loss of an entire frame of data and retransmission of the packet over TCP is not inducing increased latency and equipment stress due to frame reconstruction.
[bookmark: _Toc530140533][bookmark: _Toc24551575]Efficiency
[image:]Because of the extra information required to be transmitted per measurement, the natural (raw) bandwidth requirements of STTP will be higher than a fixed format frame-based protocol such as IEEE C37.118; however, production STTP deployments are always configured with lossless compression. When STTP is used over UDP, each group of measurements is compressed before transmission making the bandwidth requirements more comparable to IEEE C37.118 and other synchrophasor frame-based protocols. Testing showed that after packet-level compression, STTP/UDP is roughly 1.8 times larger than IEEE C37.118 for the same data. However, when using STTP over TCP, stateful compression is used which allows for better time-series based compression over many groups of data resulting in the total bandwidth requirement for STTP/TCP being less than IEEE C37.118. Test results show that STTP is at least 30% smaller than IEEE C37.118 for the same data when using TCP, see Figure 2 below.
[bookmark: _Ref527460259]Figure 2. Bandwidth Utilization, IEEE C37.118 vs. GEP
The IEC TR 61850-90-5 protocol has been demonstrated as an alternative to IEEE C37.118.2-2011 [27]. Like IEEE C37.118, the 90-5 protocol is frame-based and for the same data and has a larger frame size than IEEE C37.118[footnoteRef:23]. The 90-5 protocol also includes a feature to repeat past datasets in the current frame to help reduce overall loss when used over UDP, however, this feature should be used judiciously because for large data sets this coefficient quickly causes frame growth which will contribute to increased data loss. Therefore, any existing scalability issues encountered with IEEE C37.118.2-2011 will be exacerbated with IEC 61850-90-5. [23: At least 90-bytes more per frame when ASDU count is zero.]

[image:]Since STTP always applies compression to achieve desired bandwidth utilization, there are legitimate concerns on the impact the compression algorithms will have on both CPU loading and memory utilization. However, since there is no concentration involved with STTP the impacts are significantly less than those compared to IEEE C37.118.2-2011 and IEC TR 61850-90-5 mainly because no frames are being constructed and held in memory, see Figure 3 and Figure 4 below.
[bookmark: _Ref527461433]Figure 3. CPU Utilization, IEEE C37.118 vs. GEP
[bookmark: _Ref527461435][image:]Figure 4. Memory Utilization IEEE C37.118 vs. GEP
[bookmark: _Toc530140534][bookmark: _Toc24551576]Susceptibility to Data Loss
To address the challenges with data loss caused by large frame sizes inherent to the standard IEEE C37.118.2-2011 and IEC TR 61850-90-5 synchrophasor protocols, some utilities have opted to implement purpose-built, dedicated networks exclusively used for synchrophasor traffic [29]. Companies that have not implemented purpose-based networks have also used non-critical network infrastructure, including the internet, to share synchrophasor data due to the fear of over using bandwidth on their respective wide area networks. Although a dedicated network is ideal at reducing data loss (minimizing simultaneous network traffic results in fewer collisions), most networks are a shared resource for many kinds of heterogeneous traffic – in these networks, the continual streaming of large frames of synchrophasor data result in an increased probability of UDP frame loss, or in the case of TCP, increased communication latency due to the higher than normal data packet retransmission rates. Over provisioning of bandwidth on shared networks is a common approach used to resolve issues with sending data with large frame sizes.
[image:]In tests conducted by PeakRC, measured overall data loss for the transmission of all of its synchrophasor data using IEEE C37.118 over UDP averaged over 2% when using a data rate of 30 frames per second and more than 3,100 data values per frame, see Figure 5 below.
[bookmark: _Ref527460587]Figure 5. Data Loss IEEE C37.118 vs. GEP
The results from PeakRC testing show that using STTP results in less synchrophasor data loss as compared to other protocols, however, the loss is only significant at scale, i.e., for larger data sets. For the PeakRC large data volume test with UDP with 3,145 measurements published at 30 samples per second, IEEE C37.118 was measured to have 2.1% data loss vs. 0.14% for STTP. Although the data loss for STTP in the smaller datasets is about 6 times less for each, 0.31% data loss vs. 0.04% for the medium data volume and 0.12% data loss vs. 0.02% for the small data volume, the losses are still fractional. Consequently, only when the number of measurements included in a frame start to create frame sizes that require 20 or more network fragments for IP transmission do the losses become significant, [image:]see Figure 6.
[bookmark: _Ref527464318]Figure 6. IEEE C37.118 Frame Size as a Function of Signals per PMU
[bookmark: _Toc530140535][bookmark: _Toc24551577]Scalability
Both IEEE C37.118.2-2011 and IEC TR 61850-90-5 have a data frame size ceiling of 65K bytes – this creates a limit for information that can be exchanged between two parties in a single session. For example, with a synchrophasor stream that is publishing data at 30 samples per second, the maximum throughput is about 200,000 measurements per second[footnoteRef:24]. The 65K byte limit, as referenced in Zone 4 of Figure 6, means that no more than about 6,700 uniquely identifiable measurements can be published in one stream[footnoteRef:25]. In contrast, STTP does not require a fixed configuration nor does it specify a maximum limit on the number of identifiable measurements that can be exchanged – as such, STTP will scale to much higher volumes for data exchange, up to hardware limitations. Current STTP implementations are limited only by CPU processing power used to serialize data. On testing with pedestrian hardware, systems are able to scale from 3 to 5 million measurements per second depending on hardware capabilities. At 3 million measurements per second, assuming all input sources are streaming at 30 samples per second, a system could support 100,000 distinct identifiable measurements in a single stream. Multi-core server systems should be process 10 to 20 times as much, based on increased core counts, as the constraint is processing based, not network hardware constrained and plenty of remaining bandwidth overhead will exist on Gigabit network infrastructures even at these higher data processing volumes. As an example of need, at current growth rates synchrophasor implementations at the ISO level, with data being received from both members and peers, data volumes could easily approach 25,000 or more distinct measurements within the next few years. [24: Increasing the samples per second will increase the throughput, but not the total number of distinctly identified measurements in a configured frame.] [25: In IEEE C37.118.2-2011 using scaled integers, i.e., 2-byte word values instead of 4-byte floating-point values, the total measurements would be doubled to 13,400 measurements.]

Current synchrophasor deployments at ISO levels are aware of the limits when using IEEE C37.118.2-2011 and IEC TR 61850-90-5; their use forces the creation of multiple streams of data once a frame (typically the configuration, the larger of the frames) reaches its 65K limit. Although creation of multiple streams is a viable option when needing to send all data between two parties using an existing protocol, it is not ideal. Each new stream will need to be on a unique port and new firewall paths will need to be opened and established for each unique stream.
[bookmark: _Toc530140536][bookmark: _Toc24551578]Security
Since the IEEE C37.118.2-2011 protocol has no native security options, this is often a cited reason for using IEC TR 61850-90-5 as an alternative protocol. Certainly in lieu of native security options, many implementations of IEEE C37.118 have instead opted to deploy a VPN between sources and syncs needing to exchange data.
The IEC TR 61850905 standard works with the pre-existing IEC 61850 security options, specifically IEC 62351-9. These security options make use of digital signatures ensuring only authenticated users have access to the desired data using the GDOI protocol. GDOI handles security with UDP multicast security using a shared, group key. This security implementation works out well since IEC TR 61850905 is normally deployed over UDP multicast. For GDOI to function properly, a centrally accessible KDC – i.e., a KDC accessible to both publishers and subscribers – must be available. One of the challenges here is the necessity of establishing a centrally accessible KDC, especially when synchrophasor data will be traversing CIP security zones where each higher security zone will not allow the ingress of connections – ultimately this requires that the KDC be in the least secure zone.
Security in STTP uses standard TLS over TCP. When a UDP channel is enabled, symmetric keys are exchanged over the TLS secured channel to secure the UDP traffic where the keys are specific to each subscriber. If desired and allowed by the publisher, multicast scenarios can also be supported; in this case each subscriber to the multicast stream would each receive the same shared keys after successfully establishing a TLS connection to the publisher. The certificates used in the STTP TLS connections are also used to authenticate and strongly identify subscribers. STTP adds an additional level of security not offered by the other synchrophasor protocols being compared, i.e., measurement-level access control per subscriber as controlled by publisher configuration. In this way a specific subscriber will only have access to data as explicitly authorized by a subscriber. Finally, to accommodate traversal of CIP security zones, STTP supports reverse connection options. A reverse connection allows publishers in a higher security zone to be configured to connect out to subscribers in a lower security zone, which is necessary because initiating a connection in the other direction is otherwise not allowed. Through configuration, a subscriber with a listening socket in a reverse connection will validate the connecting publisher’s TLS certificate, but once the connection is established, all other functions proceed as normal.
[bookmark: _Toc530140537][bookmark: _Toc24551579]Non-Synchrophasor Data Transport
The IEEE C37.118.2-2011 and IEC TR 61850-90-5 both accommodate the transmission of other, non-synchrophasor data using “analog” values, such as calculated data. Transmission of analog values is always within an existing frame along with other synchrophasor data at a specific timestamp. Publication of extra data at predefined timestamp creates a caveat that the analog values, ideally, should be published at the same rate as other synchrophasor data. Otherwise, if the publication frequency, i.e., the rate of calculation or measurement, of an analog value is less than the configured publication frequency of the host frame, a sentinel value will need to occupy the space in the frame for publication periods with no measurement, e.g., a not-a-number (NaN) value. Publishing a sentinel value means that bandwidth is being unnecessarily consumed in cases where there is no data. Also, using a sentinel value can create a dilemma for meaning as NaN may represent a valid result for a calculated analog value. If the publication frequency of an analog value is higher than the configured publication frequency of the host frame, then the measured values will need to be down-sampled into the target frequency. In either case, when the publication frequencies differ, the situation for analog value transport in a frame-based protocol is not ideal.
By contrast, in STTP each individual measurement can have its own publication frequency. This is easily accommodated because each STTP data packet does not have a fixed configuration and every measured value has its own associated identification, timestamp, and quality flags, see Data Packet Response Payload. The per measurement quality flags allow for an unambiguous representation of a value’s meaning – that is, the value is always exactly what is measured or calculated with no sentinels required and the flags convey known state about the analog value, such as its quality or the accuracy of the timestamp.
[bookmark: _Toc530140538][bookmark: _Toc24551580]Other Operating Functionality
Existing frame-based synchrophasor protocols only have prescriptive methods for the management of measurement metadata. While this prescriptive method can be well-suited for substation-to-control-center use, it becomes difficult to manage as measurement metadata that spans multiple analytic solutions and control centers, for example, inter-company data exchange where it becomes difficult to describe data when measurements with shared configuration owners or in a wide-area context, due to merging complexities. To help with merging disparate data sources, STTP allows for extensible metadata sets so that industry specific information about the data being exchanged can be included and all STTP metadata is identified with 128-bit statistically unique GUID values to support dataset conflation, see APPENDIX B – STTP METADATA.

[bookmark: _Toc530140539][bookmark: _Toc24551581]Protocol Comparison Summary
A table summarizing features of the three compared protocols is provided below:
	Feature
	IEEE
C37.118
	IEC 61850
90-5
	STTP

	Structure
	Frame
	Frame
	Dynamic

	Efficiency
	Good
	Fair
	Excellent - TCP
Fair - UDP

	Data Loss (low volume)
	None - TCP
	None - TCP
	None

	Data Loss (high volume)
	Low - TCP[footnoteRef:26]
Some - UDP[footnoteRef:27] [26: Latencies with large data sets when using concentration can cause timeout expirations such that source data will to not be included in final output stream thus inducing some data loss even when using TCP.] [27: Measured to be at 2% during PeakRC testing [24].]

	Low - TCP
Some - UDP
	None - TCP
Minimal - UDP

	Scalability
	Fair
	Fair
	Excellent

	Encryption
	No
	Yes
	Yes

	Extensible Metadata
	No
	 No[footnoteRef:28] [28: SCL can be mapped to CIM giving deep insights into utility infrastructure, however, the protocol does not allow for the exchange of dynamic datasets that may be required for other industries.]

	Yes

	Multicast Supported
	Yes
	Yes
	Limited

Table 14. Protocol Comparison Summary

REFERENCES

[1] 	K. E. Martin, et. al., "Exploring the IEEE Standard C37.118–2005 Synchrophasors for Power Systems," IEEE Transactions on Power Delivery, vol. 23, no. 4, 2008.
[2] 	S. Thakur and A. Chakrabortty, "Multi-dimensional wide-area visualization of power system dynamics using Synchrophasors," in 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 2013.
[3] 	Schweitzer III, Edmund O.; Whitehead, David; Zweigle, Greg; Ravikumar, Krishnanjan Gubba; Rzepka , Greg; Schweitzer Engineering Laboratories, Inc., "Synchrophasor-Based Power System Protection and Control Applications," Wroclaw, Poland, 2010.
[4] 	"C37.118.1a-2014 - IEEE Standard for Synchrophasor Measurements for Power Systems -- Amendment 1: Modification of Selected Performance Requirements," IEEE, 2014.
[5] 	V. Madani and J. R. Carroll, "IEC 61850-90-5 Implementation at PG&E," Knoxville, TN, 2014.
[6] 	Microsoft, "The default MTU sizes for different network topologies, Article ID: 314496," 19 June 2014. [Online]. Available: https://support.microsoft.com/en-us/help/314496/the-default-mtu-sizes-for-different-network-topologies.
[7] 	V. Popeskic, "Collisions and collision detection - What are collisions in Ethernet?," 16 November 2011. [Online]. Available: https://howdoesinternetwork.com/2011/collisions.
[8] 	H. K. Huang, T. Suda and Y. Noguchi, "LAN with collision avoidance: switch implementation and simulation study," in 15th Conference on Local Computer Networks, Minneapolis, MN, USA, 1990.
[9] 	P. M. Dickens, J. W. Larson and D. M. Nicol, "Diagnostics for causes of packet loss in a high performance data transfer system," in 18th International Parallel and Distributed Processing Symposium, Santa Fe, NM, USA, USA, 2004.
[10] 	M. S. Borella, "Measurement and interpretation of Internet packet loss," IEEE Journal of Communications and Networks, Vol. 2, Issue 2, pp. 93-102, June 2000.
[11] 	M. Seewald, "Building an architecture based on IP-Multicast for large phasor measurement unit (PMU) networks," Washington, DC, 2013.
	
[12] 	H. Holbrook, B. Cain, Arastra, Inc. and Acopia Networks, "RFC 4607: Source-Specific Multicast for IP," Internet Engineering Task Force - Network Working Group, 2006.
[13] 	L. Frenzel, "Serial I/O Interfaces Dominate Data Communications," 22 September 2015. [Online]. Available: https://www.electronicdesign.com/communications/serial-io-interfaces-dominate-data-communications.
[14] 	W. T. Shaw, Cybersecurity for SCADA Systems, PennWell Books, 2006, pp. 335-336.
[15] 	Jimb0, "RS-232 vs. TTL Serial Communication," 23 November 2010. [Online]. Available: https://www.sparkfun.com/tutorials/215. [Accessed 16 August 2018].
[16] 	J. C. R. Bennett, C. Partridge and N. Shectman, "Packet Reordering is Not Pathological," IEEE/ACM Transactions on Networking, Vol. 7, No. 6, pp. 789-798, December 1999.
[17] 	C. a. M. C37.244-2013 - IEEE Guide for Phasor Data Concentrator Requirements for Power System Protection, 2013.
[18] 	C. A. Kent and J. C. Mogul, "Fragmentation Considered Harmful," Proceedings of Frontiers in Computer Communications Technology, Stowe, Vermont, 1987.
[19] 	Google, "Protocol Buffers - Techniques - Large Data Sets," 14 December 2017. [Online]. Available: https://developers.google.com/protocol-buffers/docs/techniques#large-data.
[20] 	Apache Software Foundation, "Thrift Remote Procedure Call - Protocol considerations - Framed vs. unframed transport," 21 September 2016. [Online]. Available: https://github.com/apache/thrift/blob/master/doc/specs/thrift-rpc.md#framed-vs-unframed-transport.
[21] 	E. Brosh, S. A. Baset, V. Misra, D. Rubenstein and H. Schulzrinne, "The Delay-Friendliness of TCP," Columbia University, NY, USA, 2010.
[22] 	RAPIR Task Force, "Real-Time Application of Synchrophasors for Improving Reliability," 2010.
[23] 	R. Khan, K. McLaughlin, D. Laverty and S. Sezer, "Analysis of IEEE C37.118 and IEC 61850-90-5 Synchrophasor Communication Frameworks," Boston, USA, 2016.
	
[24] 	Peak Reliability, "PRSP Phasor Gateway Evaluation Report," NASPI - https://www.naspi.org/naspi/sites/default/files/2017-03/PRSP_Phasor_Gateway_Whitepaper_Final_with_disclaimer_Final.pdf, Vancouver,WA, 2016.
[25] 	H. Falk, "IEC 61850-90-5 - an Overview (https://www.pacw.org/issue/december_2012_issue/iec_61850905_an_overview/iec_61850905_an_overview/complete_article/1.html)," PAC World, no. December, 2012.
[26] 	S. R. Firouzi, "Design, Implementation and Validation of an IEC 61850-90-5 Gateway for IEEE C37.118.2 Synchrophasor Data Transfer," Escola Tecnica Superior d'Enginyeria Industrial de Barcelona, Barcelona, Spain, 2015.
[27] 	V. Madani, R. Farquharson, M. Adamiak, R. Mackiewicz, H. Falk, C. Brunner and F. Rahmatian, "NASPI Synchrophasor Technical Report - NASPI IEC 61850-90-5 Tutorial," smartgrid.gov, Atlanta, GA, 2016.
[28] 	I. Ali, M. A. Aftab and S. M. S. Hussain, "Performance comparison of IEC 61850-90-5 and IEEE C37.118.2 based wide area PMU communication networks," Journal of Modern Power Systems and Clean Energy, vol. 4, no. 3, pp. 487-495, 2016.
[29] 	D. Kosterev, L. Carter and S. Lissit, "The Pulse of the Grid," vol. 66, no. 1, 2013.

[bookmark: _Ref524010126][bookmark: _Toc530140541][bookmark: _Toc24551583]APPENDIX A – STTP FILTER EXPRESSIONS
Subscribers use filter expressions to condense XML-based datasets, e.g., metadata, provided by STTP publishers to a desired set of information. The metadata defined by STTP is in tabular format – such as the data from tables in a database – so the syntax used for filter expressions is like that defined in Structured Query Language (SQL). Filter expressions focus on operations that work in a similar fashion to the SQL expression syntax associated with the WHERE clause in a SELECT statement but does not implement the full set of SQL language options for the clause.
[bookmark: _Toc530140542][bookmark: _Toc24551584]Limited Implementation Requirements
The purpose of a filter expression is to reduce the set of available metadata down to the desired set of values, as such, any of the more complex SQL WHERE expression operations, like those that use aggregation functions or parent-child foreign-key relationships, need not be implemented.
At a minimum, filter expressions should allow string literals demarked by single quotes, e.g., 'String Literal', and numeric literals. Expressions should also support comparison operators of =, <>, <, <=, >, and >=, where strings comparisons operate as case-insensitive in the locale of the host system. A SQL LIKE expression should so also be supported with an * or % representing a wildcard for pattern matching that can be at the beginning of a pattern '*value', at the end 'value*', or at both '*value*'. A wildcard in the middle of a pattern 'va*lue' is not allowed. Boolean operators AND, OR and NOT should be supported to allow concatenation of expressions. The NOT operator has precedence over the AND operator and it has precedence over the OR operator. Other operators, such as standard SQL arithmetic operations are encouraged, but not required.
Implementations of STTP are encouraged not to pass filter expressions along to an actual database engine for parsing since this could introduce security issues on the host database related to SQL injection. Instead implementations should a use a custom SQL expression parser, with limited implementation, against a read-only or in-memory dataset.
[bookmark: _Toc530140543][bookmark: _Toc24551585]Syntax
The filtering syntax uses the custom key word FILTER instead of the standard SQL SELECT so that it is clear to the user that the operation is not a standard SQL operation and hence restriction to capabilities of the expression may apply. The structure of an expression should be as follows:

FILTER <TableName> [TOP n] WHERE <Expression> [ORDER BY <SortField>]

The following table defines the options and clauses that make up the STTP filter expression:

	Keyword
	Example
	Description
	Required

	FILTER
	See Examples below
	Starts the filter expression
	Yes

	TOP n
	TOP 100
	Selects only the first number of items
	No

	WHERE <Expression>
	WHERE SignalType='FREQ'
	SQL WHERE expression with limited functionality support
	Yes

	ORDER BY <ColumnName>
	ORDER BY SignalType
	Orders the results by the
selected field
	No

Table 15. STTP Filter Expression Structure
[bookmark: _Ref524008358][bookmark: _Toc530140544][bookmark: _Toc24551586]Examples
The following filter expression will request to subscribe to the first 20 measurements with the company name of BPA and signal type of frequency (FREQ):

FILTER TOP 20 ActiveMeasurements WHERE Company='BPA' AND SignalType='FREQ'

The following filter expression will request to subscribe to only positive sequence current and voltage phase angles:

FILTER ActiveMeasurements WHERE SignalType IN ('IPHA','VPHA') AND Phase='+' ORDER BY PhasorID

The following filter expression will request to filter incoming metadata to exclude statistics, such as might be used with the METADATA REFRESH command payload:
[bookmark: _Ref524356980]
FILTER MeasurementDetail WHERE SignalAcronym <> 'STAT'

[bookmark: _Ref524534882][bookmark: _Toc530140545][bookmark: _Toc24551587]APPENDIX B – STTP METADATA
Metadata in STTP is XML data that is represented in a tabular format, specifically with an XML Schema (https://www.w3.org/TR/xmlschema-2/), much like that of data that can be found in a spreadsheet or table of data in a database, see Example Metadata below. Additionally, STTP allows for the transport of multiple tables of data in a single dataset, such as, a table of devices and measurements. This flexibility allows for the transport of any number of tables of metadata that may be required to describe measurements in enough detail to accommodate a given use case. Regardless, a minimum set of metadata is required for STTP to function, specifically all measurements need a unique GUID based identifier along with its data type, an alpha-numeric tag name, description, and last update timestamp.
[bookmark: _Toc530140546][bookmark: _Toc24551588]Metadata Tables and Fields
The following tables detail the metadata that are currently used in STTP, specific for the utility industry, that allow for interoperability with other synchrophasor protocols such as IEEE C37.118.
[bookmark: _Toc530140547]MeasurementDetail Table
At a minimum, STTP will require a table of measurements in order to function. Of the fields in this table, only four fields are required, that is: SignalID, PointTag, Description and UpdatedOn. All other fields are optional from the perspective of STTP but may be required for an industry specific use case.

	Field
	Type
	Description
	Required

	SignalID
	Guid
	Unique UUID of this individual measurement
	Yes

	PointTag
	String
	Well formatted tag name for historians
	Yes

	Description
	String
	Detailed measurement description (free-form)
	Yes

	ID
	String
	Measurement key string, format: "source:index"
	No

	SignalReference
	String
	Frame-based protocol mapping field (type / index)
	No

	PhasorSourceIndex
	Integer
	Phasor ordered index, uses 1-based indexing
	No

	DeviceAcronym
	String
	Name of associated parent device (if any)
	No

	UpdatedOn
	DateTime
	Time of last meta-data update
	Yes

[bookmark: _Toc530140548]
DeviceDetail Table
The device table defines the devices, such as PMUs, that are the sources of measurements. This table is useful for mapping STTP to and from IEEE C37.118.

	Field
	Type
	Description

	Acronym
	String
	Alpha-numeric device, e.g., pmu/station name (all-caps)

	Name
	String
	User-defined device name / description (free-form)

	UniqueID
	Guid
	Device unique UUID (used for IEEE C37.118 CFG-3 frame)

	AccessID
	Integer
	ID code used for device connection / reference

	ParentAcronym
	String
	Original PDC name (none for direct connected devices)

	ProtocolName
	String
	Original protocol name

	FramesPerSecond
	Integer
	Device reporting rate, e.g., 30 fps

	CompanyAcronym
	String
	Original device company name

	VendorAcronym
	String
	Original device vendor name (if provided)

	VendorDeviceAcronym
	String
	Original vendor device name, e.g., PMU brand

	Longitude
	Float
	Device longitude (if reported)

	Latitude
	Float
	Device latitude (if reported)

	UpdatedOn
	DateTime
	Time of last meta-data update

[bookmark: _Toc530140549]PhasorDetail Table
The phasor table defines phasors, as described in IEEE C37.118, that are associated with devices. This table is required to construct a frame of data in IEEE C37.118 format using input measurements received from STTP.

	Field
	Type
	Description

	DeviceAcronym
	String
	Name of associated parent device (required)

	Label
	String
	Phasor label (16-characters) for CHNAM

	Type
	String
	Current (I) or Voltage (V)

	Phase
	String
	Phase, e.g., A, B, C, +, -, 0

	SourceIndex
	Integer
	Phasor ordered index, uses 1-based indexing

	UpdatedOn
	DateTime
	Time of last meta-data update

[bookmark: _Ref527541769][bookmark: _Toc530140550][bookmark: _Toc24551589]Example Metadata

<?xml version="1.0" standalone="yes"?>
<Metadata>
 <xs:schema id="Metadata" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Metadata">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="DeviceDetail">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="NodeID" type="xs:string" minOccurs="0" />
 <xs:element name="UniqueID" type="xs:string" minOccurs="0" />
 <xs:element name="OriginalSource" type="xs:string" minOccurs="0" />
 <xs:element name="IsConcentrator" type="xs:boolean" minOccurs="0" />
 <xs:element name="Acronym" type="xs:string" minOccurs="0" />
 <xs:element name="Name" type="xs:string" minOccurs="0" />
 <xs:element name="AccessID" type="xs:long" minOccurs="0" />
 <xs:element name="ParentAcronym" type="xs:string" minOccurs="0" />
 <xs:element name="ProtocolName" type="xs:string" minOccurs="0" />
 <xs:element name="FramesPerSecond" type="xs:long" minOccurs="0" />
 <xs:element name="CompanyAcronym" type="xs:string" minOccurs="0" />
 <xs:element name="VendorAcronym" type="xs:string" minOccurs="0" />
 <xs:element name="VendorDeviceName" type="xs:string" minOccurs="0" />
 <xs:element name="Longitude" type="xs:decimal" minOccurs="0" />
 <xs:element name="Latitude" type="xs:decimal" minOccurs="0" />
 <xs:element name="InterconnectionName" type="xs:string" minOccurs="0" />
 <xs:element name="ContactList" type="xs:string" minOccurs="0" />
 <xs:element name="Enabled" type="xs:boolean" minOccurs="0" />
 <xs:element name="UpdatedOn" type="xs:dateTime" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="MeasurementDetail">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DeviceAcronym" type="xs:string" minOccurs="0" />
 <xs:element name="ID" type="xs:string" minOccurs="0" />
 <xs:element name="SignalID" type="xs:string" minOccurs="0" />
 <xs:element name="PointTag" type="xs:string" minOccurs="0" />
 <xs:element name="SignalReference" type="xs:string" minOccurs="0" />
 <xs:element name="SignalAcronym" type="xs:string" minOccurs="0" />
 <xs:element name="PhasorSourceIndex" type="xs:long" minOccurs="0" />
 <xs:element name="Description" type="xs:string" minOccurs="0" />
 <xs:element name="Internal" type="xs:boolean" minOccurs="0" />
 <xs:element name="Enabled" type="xs:boolean" minOccurs="0" />
 <xs:element name="UpdatedOn" type="xs:dateTime" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="PhasorDetail">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ID" type="xs:long" minOccurs="0" />
 <xs:element name="DeviceAcronym" type="xs:string" minOccurs="0" />
 <xs:element name="Label" type="xs:string" minOccurs="0" />
 <xs:element name="Type" type="xs:string" minOccurs="0" />
 <xs:element name="Phase" type="xs:string" minOccurs="0" />
 <xs:element name="DestinationPhasorID" type="xs:long" minOccurs="0" />
 <xs:element name="SourceIndex" type="xs:long" minOccurs="0" />
 <xs:element name="UpdatedOn" type="xs:dateTime" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="SchemaVersion">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="VersionNumber" type="xs:long" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 <DeviceDetail>
 <NodeID>8736f6c7-ad41-4b43-b4f6-e684e0d4ad20</NodeID>
 <UniqueID>c8283c22-8aed-4a0d-bf9d-76111932afd9</UniqueID>
 <IsConcentrator>false</IsConcentrator>
 <Acronym>TESTDEVICE</Acronym>
 <Name>Test Device</Name>
 <AccessID>2</AccessID>
 <ParentAcronym />
 <ProtocolName>IEEE 1344-1995</ProtocolName>
 <FramesPerSecond>30</FramesPerSecond>
 <CompanyAcronym>TVA</CompanyAcronym>
 <VendorAcronym>ABB</VendorAcronym>
 <VendorDeviceName>ABB-521</VendorDeviceName>
 <Longitude>-89.8038</Longitude>
 <Latitude>35.3871</Latitude>
 <InterconnectionName>Eastern Interconnection</InterconnectionName>
 <ContactList />
 <Enabled>true</Enabled>
 <UpdatedOn>2018-03-14T19:23:10.321-04:00</UpdatedOn>
 </DeviceDetail>
 <MeasurementDetail>
 <DeviceAcronym>TESTDEVICE</DeviceAcronym>
 <ID>PPA:1</ID>
 <SignalID>29b80c23-b76e-4f3d-a0bd-855b0f8ef08d</SignalID>
 <PointTag>TVA_TESTDEVICE:ABBS</PointTag>
 <SignalReference>TESTDEVICE-SF</SignalReference>
 <SignalAcronym>FLAG</SignalAcronym>
 <Description>Test Device ABB-521 Status Flags</Description>
 <Internal>true</Internal>
 <Enabled>true</Enabled>
 <UpdatedOn>2018-03-14T19:23:11.477-04:00</UpdatedOn>
 </MeasurementDetail>
 <MeasurementDetail>
 <DeviceAcronym>TESTDEVICE</DeviceAcronym>
 <ID>PPA:2</ID>
 <SignalID>285dfa57-7b51-47b5-919b-b1dc7140d01a</SignalID>
 <PointTag>TVA_TESTDEVICE:ABBF</PointTag>
 <SignalReference>TESTDEVICE-FQ</SignalReference>
 <SignalAcronym>FREQ</SignalAcronym>
 <Description>Test Device ABB-521 Frequency</Description>
 <Internal>true</Internal>
 <Enabled>true</Enabled>
 <UpdatedOn>2018-03-14T19:23:11.665-04:00</UpdatedOn>
 </MeasurementDetail>
 <MeasurementDetail>
 <DeviceAcronym>TESTDEVICE</DeviceAcronym>
 <ID>PPA:5</ID>
 <SignalID>977747f8-056f-4fc6-88b2-f0cfb51ec139</SignalID>
 <PointTag>TVA_TESTDEVICE-BUS1:ABBV</PointTag>
 <SignalReference>TESTDEVICE-PM1</SignalReference>
 <SignalAcronym>VPHM</SignalAcronym>
 <PhasorSourceIndex>1</PhasorSourceIndex>
 <Description>Test Device Bus 1 Positive Sequence Voltage Magnitude</Description>
 <Internal>true</Internal>
 <Enabled>true</Enabled>
 <UpdatedOn>2018-03-14T19:23:12.227-04:00</UpdatedOn>
 </MeasurementDetail>
 <MeasurementDetail>
 <DeviceAcronym>TESTDEVICE</DeviceAcronym>
 <ID>PPA:6</ID>
 <SignalID>952ed494-377f-4be3-9151-86c78ead9231</SignalID>
 <PointTag>TVA_TESTDEVICE-BUS1:ABBVH</PointTag>
 <SignalReference>TESTDEVICE-PA1</SignalReference>
 <SignalAcronym>VPHA</SignalAcronym>
 <PhasorSourceIndex>1</PhasorSourceIndex>
 <Description>Test Device Bus 1 Positive Sequence Voltage Phase Angle</Description>
 <Internal>true</Internal>
 <Enabled>true</Enabled>
 <UpdatedOn>2018-03-14T19:23:12.415-04:00</UpdatedOn>
 </MeasurementDetail>
 <MeasurementDetail>
 <DeviceAcronym>TESTDEVICE</DeviceAcronym>
 <ID>PPA:4</ID>
 <SignalID>98c93a54-9435-48cf-987d-e897b793441a</SignalID>
 <PointTag>TVA_TESTDEVICE:ABBDF</PointTag>
 <SignalReference>TESTDEVICE-DF</SignalReference>
 <SignalAcronym>DFDT</SignalAcronym>
 <Description>Test Device ABB-521 Frequency Delta (dF/dt)</Description>
 <Internal>true</Internal>
 <Enabled>true</Enabled>
 <UpdatedOn>2018-03-14T19:23:12.04-04:00</UpdatedOn>
 </MeasurementDetail>
 <MeasurementDetail>
 <DeviceAcronym>TESTDEVICE</DeviceAcronym>
 <ID>STAT:35</ID>
 <SignalID>13f86d22-bf54-4ceb-b345-6a423118a1bc</SignalID>
 <PointTag>TVA_TESTDEVICE!IS:ST1</PointTag>
 <SignalReference>TESTDEVICE!IS-ST1</SignalReference>
 <SignalAcronym>STAT</SignalAcronym>
 <Description>Total frames received during last reporting interval.</Description>
 <Internal>true</Internal>
 <Enabled>true</Enabled>
 <UpdatedOn>2018-03-20T22:12:26.933-04:00</UpdatedOn>
 </MeasurementDetail>
 <PhasorDetail>
 <ID>12</ID>
 <DeviceAcronym>TESTDEVICE</DeviceAcronym>
 <Label>500 kV Bus 1</Label>
 <Type>V</Type>
 <Phase>+</Phase>
 <SourceIndex>1</SourceIndex>
 <UpdatedOn>2018-03-14T19:23:10.509-04:00</UpdatedOn>
 </PhasorDetail>
 <SchemaVersion>
 <VersionNumber>8</VersionNumber>
 </SchemaVersion>
[bookmark: _Ref524446045]</Metadata>

[bookmark: _Toc530140551][bookmark: _Toc24551590]APPENDIX C – STTP COMMAND PAYLOADS
The following are the payload definitions associated with specific STTP command types, see Table 10. STTP Command Types.
[bookmark: _Toc530140552][bookmark: _Toc24551591]Metadata Refresh Command Payload
The payload for the METADATA REFRESH command is optional. If the payload length is zero, no filters are applied to the publisher metadata and all records that the subscriber is authorized to view will be returned in the dataset. When a payload is specified, i.e., the payload length is greater than zero, the payload allows the subscriber to provide text-based filtering expressions to reduce the metadata dataset provided by the publisher. For example, the subscriber may want to reduce the metadata to records for a certain company or signal type to reduce the number of records received. The format of the filter expression is defined in APPENDIX A – STTP FILTER EXPRESSIONS. Multiple expressions can be defined, each separated by a semi-colon. Below are the elements that make up the optional metadata refresh command payload:

	Field
	Byte Size
	Description

	EXPRESSION LENGTH
	4
	Number of bytes in the expression

	EXPRESSION
	EXPRESSION LENGTH
	String-based filter expressions separated by semi-colons

Table 16. Metadata Refresh Command Payload Fields
[bookmark: _Toc530140553][bookmark: _Toc24551592]Subscribe Command Payload
The payload for the SUBSCRIBE command defines the desired data packet options and connection string expression used to start data streaming from the publisher. Requests for measurements that do not exist or are not allowed by the publisher for the subscriber will be ignored. Below are the elements that make up the subscribe command payload:

	Field
	Byte Size
	Description

	DATA PACKET OPTIONS
	1
	Currently a fixed value of 0x02 specifying compact measurement format, no synchronization[footnoteRef:29] [29: Future implementations of STTP will drop this value. GEP supports requests for a non-compact measurement format to receive measurements using a simple serialization, however, this option is never used in practice. Another GEP subscription option exists to request server-side pre-concentration of data which delivers measurements in time-sorted order – however, the publisher has the right to deny this, and by default does, because it induces extra memory and CPU burden per subscription. The decision made was that if subscribers need data in a time-sorted manner, it will need to be concentrated locally post reception.]

	EXPRESSION LENGTH
	4
	Number of bytes in the key/value pair
connection string expression

	EXPRESSION
	EXPRESSION LENGTH
	String-based key/value pair connection string expression that defines desired subscription parameters, see Table 18. Subscribe Command Connection String Parameters

Table 17. Subscribe Command Payload Fields

The connection string expression used in the subscribe command is formatted as a series of key/value pairs where an equals-sign (=) separates the key and value and a semi-colon (;) separates the pairs. The key names are not case-sensitive. The available keys and value types for the subscription are defined as follows:

	Key[footnoteRef:30] [30: These key names are subject to change with ongoing STTP updates and improvements. STTP API implementations typically hide these key/value details through properties and configuration parameters.]

	Value Type
	Description

	TrackLatestMeasurements
	Boolean
	Enables measurement down-sampling, speed controlled by PublishInterval. Defaults to false if not specified.

	PublishInterval
	Double
	The interval, in seconds, over which to deliver streaming data. Only applicable when TrackLatestMeasurements = true.

	IncludeTime
	Boolean
	Determines if measurements should include timestamp. Defaults to true if not specified.

	ProcessingInterval
	32-bit Integer
	Specifies the initial historical data replay processing interval to use, in milliseconds. Only applicable when StartTimeContraint and StopTimeConstraint are provided. A value of 1 means to use the default processing interval and a value of 0 means to process data as fast as possible. Defaults to 1 if not specified.

	UseMillisecondResolution
	Boolean
	Requests that millisecond time resolution be used for subscription to use less space when encoding timestamps. Defaults to false if not specified.

	RequestNaNValueFilter
	Boolean
	Determines if values that contain not-a-number (NaN) should be published. Defaults to false if not specified, meaning values that NaN will be delivered to subscriber.

	InputMeasurementKeys
	String
	Defines the list of measurement identifiers or filter expression that the subscriber desires for subscription. When a list of identifiers is provided – either the GUID based signal ID, measurement key string, or point tag – the values are separated by a semi-colon.
See APPENDIX A – STTP FILTER EXPRESSIONS for more details on filter expressions.

	StartTimeConstraint
	String
	When supported by the publisher, defines the start time, in UTC, for a subscription used to start a historical subscription. Time format can be absolute, e.g., 12-30-2000 23:59:59.033, or relative, e.g., *-20s meaning start twenty seconds before current time. For relative time specifications an “s” suffix is for seconds, “m” is for minutes, “h” is for hours and “d” is for days.

	StopTimeConstraint
	String
	When supported by the publisher, defines the stop time, in UTC, for a subscription used to mark the end of a historical subscription. See StartTimeConstraint for time format options. When historical replay is complete, subscriber will receive a PROCESSING COMPLETE response.

[bookmark: _Ref524612444]Table 18. Subscribe Command Connection String Parameters
[bookmark: _Toc530140554][bookmark: _Toc24551593]Update Processing Interval Command Payload
The payload for the UPDATE PROCESSING INTERVAL command defines the new processing interval to apply to an ongoing historical data replay subscription. This command can be issued at any time while historical data is streaming back to the subscriber, this allows dynamic control of the speed of the replay. Except for the values of -1 and 0, the new value specifies the desired processing interval for data in milliseconds. Implementations of STTP use the interval to induce a delay in historical replay. A value of -1 means to use the default processing interval while a value of 0 means to process data as fast as possible. Below are the elements that make up the update processing interval command payload:

	Field
	Byte Size
	Description

	VALUE
	4
	New interval to apply (INT32)

Table 19. Update Processing Interval Command Payload Fields
[bookmark: _Ref527453107][bookmark: _Toc530140555][bookmark: _Toc24551594]Define Operational Modes Command Payload
The payload for the DEFINE OPERATIONAL MODES command defines the desired protocol version and bit flags used to set up the desired communication rules between the publisher and subscriber. As soon as a connection with a publisher is established, the subscriber sends this command. The command can be used only once per connection and it must be the first command to the publisher. Any other commands received by the publisher before this command may cause a session termination since the connection may not look like a valid STTP protocol session. Below are the elements that make up the define operational modes command payload:

	Field
	Byte Size
	Description

	VALUE
	4
	Desired operational modes to use (INT32)
See Table 21. Operational Modes – Bit Masks and Values

Table 20. Define Operational Modes Command Payload Fields

	Field
	Value
	Description

	VERSION MASK
	0x0000001F
	Bit mask used to apply protocol
version number (0 to 31)

	COMPRESSION
MODE MASK
	0x000000E0
	Bit mask used to set desired
compression algorithms, see
Table 22. Compression Algorithm Flags

	ENCODING
MASK
	0x00000300
	Bit mask used to set text encoding mode, see Table 23. Text Encoding Options

	COMPRESS
PAYLOAD DATA
	0x20000000
	Determines whether payload data is
compressed when exchanged between
publisher and subscriber

	COMPRESS SIGNAL
INDEX CACHE
	0x40000000
	Determines whether the signal index cache
is compressed when exchanged between
publisher and subscriber

	COMPRESS
METADATA
	0x80000000
	Determines whether metadata is
compressed when exchanged between
publisher and subscriber

[bookmark: _Ref524104815]Table 21. Operational Modes – Bit Masks and Values

	Field
	Value
	Description

	GZIP
	0x20
	Enable GZip style compression – applies to METADATA REFRESH success response payload when COMPRESS METADATA flag is set, UPDATE SIGNAL INDEX CACHE payload when COMPRESS SIGNAL INDEX CACHE flag is set, and DATA PACKET payload when data channel operates over a UDP socket and
COMPRESS PAYLOAD DATA is set

	TSSC
	0x40
	Enable TSSC style compression – applies to DATA PACKET payload when data channel operates over a TCP socket and COMPRESS PAYLOAD DATA is set

	NONE
	0x00
	No compression algorithms are selected

[bookmark: _Ref524339700]Table 22. Compression Algorithm Flags[footnoteRef:31] [31: Instead of requiring fixed bit flags for compression algorithms, future versions of STTP may instead use string values to specify the desired algorithm to use. Using a string name creates a more flexible algorithm negotiation option – the publisher need only respond with a failure if a requested algorithm is not supported, perhaps including a list of the supported compression algorithms.]

	Field
	Value
	Description

	UNICODE
	0x000
	Process strings using UTF-16 (a.k.a., Unicode) encoding

	BIG ENDIAN UNICODE
	0x100
	Process strings using UTF-16 (a.k.a., Unicode) encoding where each 16-bit text character is serialized in big-endian order

	UTF8
	0x200
	Process strings using UTF-8 encoding

	ANSI
	0x300
	Process strings using ANSI encoding

[bookmark: _Ref524340346]Table 23. Text Encoding Options
[bookmark: _Toc530140556][bookmark: _Toc24551595]Confirm Notification Command Payload
The payload for the CONFIRM NOTIFICATION command defines the hash code, received in the NOTIFY response payload, used to inform the publisher that the notification sent to the subscriber was received.

	Field
	Byte Size
	Description

	VALUE
	4
	Notification hash to confirm (INT32)

Table 24. Confirm Notification Command Payload Fields
[bookmark: _Toc530140557][bookmark: _Toc24551596]Confirm Buffer Block Command Payload
The payload for the CONFIRM BUFFER BLOCK command defines the sequence number, received in the BUFFER BLOCK response payload, used to inform the publisher that the buffer block sequence was received.

	Field
	Byte Size
	Description

	VALUE
	4
	Buffer block sequence to confirm (UINT32)

Table 25. Confirm Buffer Block Command Payload Fields

[bookmark: _Ref524445999][bookmark: _Toc530140558][bookmark: _Toc24551597]APPENDIX D – STTP RESPONSE PAYLOADS
The following are the payload definitions associated with specific STTP response types, see Table 12. STTP Response Types.
[bookmark: _Toc530140559][bookmark: _Toc24551598]Succeeded Response Payload for Simple Commands
The payload for the SUCCESS response defines the message content for a successful response to a solicited command. In the case of the SUBSCRIBE, UNSUBSCRIBE, and ROTATE CIPHER KEYS[footnoteRef:32] commands the payload will be a text message, suitable for logging, that provides details about the operation, e.g., how many points were successfully subscribed. Below are the elements that make up the payload for a simple response: [32: The success or failure response to the ROTATE CIPHER KEYS is simply an operational confirmation to the solicited command. The subscriber will receive a second response, i.e., UPDATE CIPHER KEYS, that actually contains the new symmetric encryption keys – this is because UPDATE CIPHER KEYS can be unsolicited, i.e., the publisher can update the keys at any time.]

	Field
	Byte Size
	Description

	MESSAGE
	PAYLOAD LENGTH
	String-based response message

Table 26. Success Response Payload Fields for Simple Commands
[bookmark: _Toc530140560][bookmark: _Toc24551599]Succeeded Response Payload for METADATA REFRESH Command
The payload for the SUCCESS response for the METADATA REFRESH command is XML dataset containing all the metadata the subscriber is authorized to see[footnoteRef:33]. The payload contents will be compressed if the GZip compression mode is enabled with the DEFINE OPERATIONAL MODES command when the connection is established, see Table 22. Compression Algorithm Flags. The content of XML metadata is extensible and subject to industry needs, however, at a minimum the fields as defined in APPENDIX B – STTP METADATA are available. Below are the elements that make up the payload for a simple response: [33: If the subscriber specified any filter expressions as part of the METADATA REFRESH command payload, these filter expressions will be applied and will reduce the metadata available in the dataset.]

	Field
	Byte Size
	Description

	XML METADATA
	PAYLOAD LENGTH
	Compressed GZip or raw string-based response message that contains XML tables representing metadata.

Table 27. Success Response Payload Fields for METADATA REFRESH Command
[bookmark: _Toc530140561][bookmark: _Toc24551600]Failed Response Payload
The payload for the FAILED response defines the message content for a failed response to a solicited command. Any failed response will be a text message, suitable for logging, that provides details about the unsuccessful operation. Below are the elements that make the payload for a failed response:

	Field
	Byte Size
	Description

	[bookmark: _Hlk524384999]MESSAGE
	PAYLOAD LENGTH
	String-based response message

Table 28. Failed Response Payload Fields
[bookmark: _Ref527448746][bookmark: _Toc530140562][bookmark: _Toc24551601]Data Packet Response Payload
The payload for the DATA PACKET response defines the serialized time-series measurement values, i.e., the data, that are streaming back to a subscriber. The contents of the data packets are repeated binary encoding of an identifier, timestamp, measured value and flags (e.g., time and data quality) – that are in no fixed order, i.e., the measurements in one data packet may be different than those in the next. Data packet size is managed at the application layer such that only a finite group of measurements are sent at once – ideally one group with will fit neatly within a single network packet to reduce (or eliminate) data block fragmentation, see

LARGE FRAME IMPACT ON IP. The data packets are constructed to be easy to parse so that third party systems can easily consume and use data. The raw native format of the data packet response uses a compact serialization format to help conserve bandwidth. Below are the elements that make up the payload for a data packet response:

	
	Field
	Byte Size
	Description

	
	DATA PACKET FLAGS
	1
	Defines a marker used to define the data packet payload format, e.g., if the content is compressed, see Table 30. Data Packet Flags

	┌
│
	MEASUREMENT COUNT
	4
	Number of measurements defined in
data packet payload (INT32)

	│
└
	DATA PACKET PAYLOAD
	PAYLOAD LENGTH - 5
	Format depends on if COMPRESS PAYLOAD DATA was specified in DEFINE OPERATIONAL MODES and selected compression algorithm, see Table 22. Compression Algorithm Flags

	
	Encrypt Range
	
	When UDP encryption is enabled with the UPDATE CIPHER KEYS command, data will be encrypted starting with MEASUREMENT COUNT field and include all of the DATA PACKET PAYLOAD

[bookmark: _Ref527448603]Table 29. Data Packet Response Payload Fields

	Field
	Value
	Description

	COMPACT
	0x02
	Determines if data packet payload format
 is using compact serialization

	CIPHER INDEX
	0x04
	Determines which cipher index to use
when decrypting data packet payload:
Bit set = use odd cipher index (i.e., 1),
Bit clear = use even cipher index (i.e., 0)

	COMPRESSED
	0x08
	Determines if data packet payload is compressed – actual compression format will be based on data channel socket and selected compression algorithm, a TCP socket will use TSCC and a UDP socket will use GZip

[bookmark: _Ref524359188]Table 30. Data Packet Flags

Specifics of the compression of a data packet are covered in the STTP Data Compression section. The details that follow describe the native STTP encoding of time-series values. Each block of data to be published, i.e., the data packet response payload, consists of a collection of time-series values where each value is a serialized structure containing a 128-bit GUID-based identifier, a 64-bit high resolution timestamp, a 32-bit floating-point value, and one byte (i.e., 8-bits) of associated quality flags, see Figure 7. The GUID-based identifier will be directly referenceable as a lookup key into the received metadata so that the measurement type, description, and other information can be used by a consuming application at runtime. The total data block size is dynamically configurable, this way it can be adjusted at run-time to accommodate varying network conditions to reduce packet fragmentation – but ideally, the data block size will target the current network MTU size minus headers so that one block of data will fit within one network packet.
[bookmark: _Ref523495251][image:][image:]
Figure 7. Serialized Measurement Structure

[bookmark: _Ref524377131]To reduce the size of transmission of serialized measurements the 128-bit GUID is mapped to a 16-bit[footnoteRef:34] identifier established by the publisher during subscription, see Update Signal Index Cache Response Payload. Additionally, since publication of timestamps are near other timestamps in value, offsets are provided to the subscriber by the publisher to provide a common base for timestamp values so that the size can be reduced. When the offset is unavailable or cannot be used (because it is out of range for the timestamp to be encoded), the full resolution timestamp will be sent. Below are the elements that make up the format of a compact measurement: [34: Future versions of STTP are expected to change this runtime identifier to a 32-bit value used with 7-bit encoding to allow subscriptions with more than 65K subscribed measurement values.]

	Field
	Byte Size
	Description

	MEASUREMENT FLAGS
	1
	Defines the compact measurement flags. These flags also include the base time offset, if it is in use, to designate the current base time offset index, see
 Table 32. STTP Compact Measurement Flags

	SIGNAL INDEX34
	 2
	Index from the Signal Index Cache table that maps to the 128-bit measurement GUID (UINT16)

	MEASUREMENT VALUE
	4
	32-bit floating-point value of the measurement

	TIMESTAMP
	0, 2, 4 or 8
	Encoded timestamp:
0 bytes if subscription does not include timestamps
2 bytes UINT16 offset added to current time base if millisecond resolution has been selected
4 bytes UINT32 added to current time base if not using millisecond resolution
8 bytes when full timestamp encoding is needed, i.e., value outside range of current base time offset

Table 31. STTP Compact Measurement Format
	Field
	Value
	Description

	BASE TIME OFFSET
	0x40
	Determines if base time offset is
active for current measurement

	TIME INDEX
	0x80
	Determines which base time offset index to
use for current measurement (when active):
Bit set = use odd time index (i.e., 1),
Bit clear = use even time index (i.e., 0)

	DATA
RANGE
	0x01
	Marks measurement quality flags to
show issue with the value range

	DATA QUALITY
	0x02
	Marks measurement quality flags to
show issue with value quality

	TIME
QUALITY
	0x04
	Marks measurement quality flags to
show issue with the time quality

	SYSTEM
ISSUE
	0x08
	Marks measurement quality flags to
show a system related issue

	CALCULATED
VALUE
	0x10
	Marks measurement quality flags to
show that value was calculated / derived

	DISCARDED
VALUE
	0x20
	Marks measurement quality flags to
show that value was discarded while processing

[bookmark: _Ref524362314]Table 32. STTP Compact Measurement Flags
[bookmark: _Toc530140563][bookmark: _Toc24551602]Update Signal Index Cache Response Payload
The payload for the UPDATE SIGNAL INDEX CACHE response defines the lookup table that maps a 128-bit measurement ID to a 16-bit34 run-time used to reduce the size of a serialized measurement. Since the signal index cache is maintained per subscriber, this cache will only map the authorized measurements available to a subscriber, however, for the set of requested measurements the cache also includes a list of the measurements that publisher did not authorize. Generated run-time IDs are temporal, i.e., they only have context for the current session. A subscriber must accept updates to the signal index cache when provided by a publisher because changes in metadata and access rights can occur dynamically. To reduce race conditions, publisher should attempt to maintain as much continuity and uniqueness as possible with run-time IDs when dynamically updating the signal index cache as time-slew can occur between data transmission of measurements and reception of new signal index cache. Below are the elements that make up payload for the update signal index cache:

	Field
	Byte Size
	Description

	SIGNAL INDEX CACHE PAYLOAD
	PAYLOAD LENGTH
	Compressed GZip or directly serialized signal index cache, see Table 34. STTP Signal Index Cache Format

Table 33. Update Signal Index Cache Response Payload Fields
	
	Field
	Byte Size
	Description

	
	SIGNAL INDEX CACHE PAYLOAD LENGTH
	4
	Number of bytes in the signal index cache payload (INT32) – this payload length is different from the response message payload length because message payload may be compressed

	
	SUBSCRIBER ID
	16
	Defines the 128-bit GUID-based identifier that uniquely identifies the subscriber, typically implemented as a run-time reference to a validated certificate

	
	REFERENCE COUNT
	 4
	Total number of signal index references defined

	┌
│
	SIGNAL INDEX34
	2
	Run-time measurement index that maps
to a 128-bit GUID (UINT16)

	│
│
	SIGNAL ID
	16
	Defines the 128-bit GUID-based identifier that uniquely defines the measurement

	│
│
	SOURCE SIZE
	4
	Number of bytes in the source string for the measurement (INT32)

	│
│
	SOURCE[footnoteRef:35] [35: The source string and associated integer source ID will be dropped in future versions of STTP. These fields were implemented as part of GEP to define an alternate lookup key for the signal index.]

	SOURCE SIZE
	String-based source of measurement
as defined by the publisher

	└
	SOURCE ID
	4
	Source identifier as defined by
the publisher (UINT32)

	
	Repeat Fields
	
	Repeat fields SIGNAL INDEX to SOURCE ID for REFERENCE COUNT times

	
	UNAUTHORIZED COUNT
	4
	Total number of measurements requested by subscriber that were unauthorized by publisher

	┌
│
└
	UNAUTHORIZED SIGNAL ID
	16
	Defines the 128-bit GUID-based
identifier requested by subscriber
that was unauthorized by publisher

	
	Repeat Field
	
	Repeat field UNAUTHORIZED SIGNAL ID for UNAUTHORIZED COUNT times

[bookmark: _Ref524381586]Table 34. STTP Signal Index Cache Format
[bookmark: _Toc530140564][bookmark: _Toc24551603]Data Start Time Response Payload
The payload for the DATA START TIME response defines the timestamp of the first data point sent by the publisher. To reduce bandwidth, options exist to not transport timestamps when the subscriber does not need them. Additionally, the timestamp value may represent a sequence value. To provide a base timestamp that represents the time at the beginning of a transmission, this response includes the timestamp value of the first value to be transmitted when a subscription is started, should the value be useful. See Protocol Timestamp Format for information on timestamp encoding. Below are the elements that make up the payload for a data start time response:

	Field
	Byte Size
	Description

	VALUE
	8
	Start time of first data point (INT64)

Table 35. Data Start Time Response Payload Fields
[bookmark: _Toc530140565][bookmark: _Toc24551604]Buffer Block Response Payload
The payload for the BUFFER BLOCK response defines a free form block of data that does not conform to a time-series value. A buffer block measurement must still be defined as a measurement and subscribed-to by the subscriber, but the implementation can be sourced from data other than time-series measurements, e.g., file data. Each data in block must be partitioned to fit within a minimal number of network packets, so data from a source larger than a network packet must be sequenced. The subscriber will be required to acknowledge reception of this BUFFER BLOCK response with a CONFIRM BUFFER BLOCK command since blocks may exist as a sequence of packets and could require retransmission, e.g., over UDP. Below are the elements that make up the payload for a buffer block response:

	Field
	Byte Size
	Description

	VALUE
	4
	Buffer block sequence used for confirmation (UINT32)

	SIGNAL INDEX
	2
	Index from the Signal Index Cache table that maps to the 128-bit measurement GUID (UINT16)

	BUFFER BLOCK PAYLOAD
	PAYLOAD LENGTH - 6
	Free-form payload of buffer block

Table 36. Buffer Block Response Payload Fields
[bookmark: _Toc530140566][bookmark: _Toc24551605]Notify Response Payload
The payload for the NOTIFY response defines a critical notification as a string message. A notify operation works with a specially defined measurement, still requiring subscription, that allows the subscriber to receive messages with verified delivery. Since the message is considered critical, the subscriber must respond with a CONFIRM NOTIFICATION command since the message may require retransmission, not only when used over a lossy communications transport, e.g., UDP, but because the publisher requires verification of delivery even if subscriber has gone offline, e.g., restarting:

	Field
	Byte Size
	Description

	VALUE
	4
	Notification hash used for confirmation (INT32)

	MESSAGE
	PAYLOAD LENGTH - 4
	String-based notification message

Table 37. Notify Response Payload Fields

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.png

image37.png

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpeg

image54.jpeg

image55.jpeg

image56.png

image57.png

image58.png

image59.jpeg

image60.jpeg

image61.jpeg

image62.jpeg

image63.png

image64.png

image65.png

image66.jpeg

image67.jpeg

image68.png

image69.jpeg

image70.jpeg

image71.jpeg

image72.jpeg

image73.jpeg

image74.png

image75.jpeg

image76.png

image77.jpeg

image78.png

image79.jpeg

image80.png

image81.jpeg

image82.jpeg

image83.png

image84.png

image85.png

image86.png

image87.jpeg

image88.jpeg

image89.png

image90.png

image91.png

image92.jpeg

image93.jpeg

image94.png

image95.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image102.png

image103.png

image104.png

image105.png

image106.png

image107.png

image108.png

image109.png

image110.png

image111.jpeg

image112.png

image113.png

image114.png

image115.PNG

image116.PNG

image117.PNG

image118.PNG

image119.png

image120.png

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.jpeg

image16.jpeg

image17.jpeg

image18.png

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image1.png

image2.png

