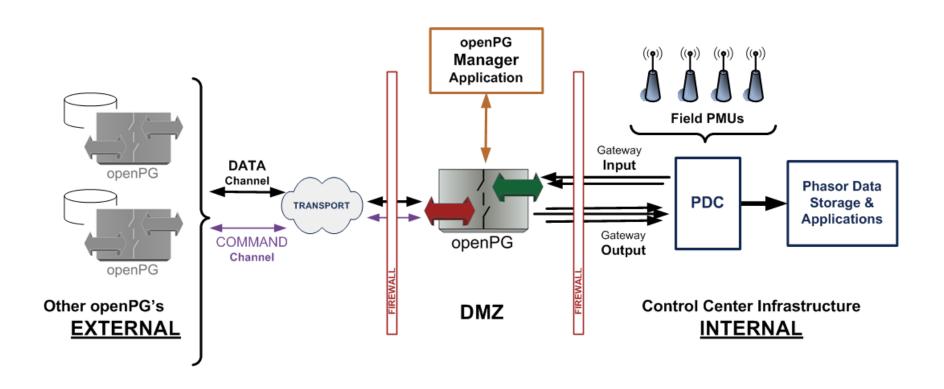


Entergy Phasor Project Phasor Gateway Testing

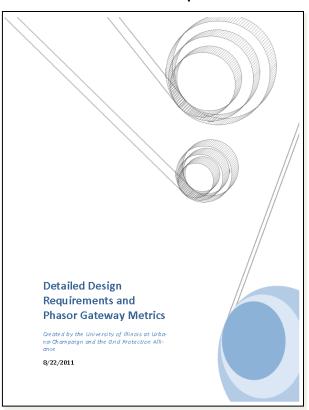
Tim Yardley, University of Illinois

A Phasor Gateway?


Simply put...

- Designed to be a front-end
- Meant to share real-time PMU information between utilities
- Designed for WAN communication
- Needs to be secure, selective, and flexible

Phasor Exchange Architecture



The Gateway Design

A phasor gateway requirements document was developed in 2011.

- Utility driven design
- Using COTS hardware
- CIP v5 ready
- Built with high availability and reliability
- Easy publish and subscribe point configuration
- Rapid extensibility to support new protocols
- Bridging multiple namespaces
- Ability to detect and alarm on communication or data issues

The Gateway Implementation

- Designed by GPA and UIUC, with extensive input from Entergy and feedback from other utilities
- Co-funded by NERC, DOE, and Entergy
- Derived from TVA/GPA OpenPDC code library
- Open-source and security reviewed
- Security features augmented, performance enhanced, and much more
- Initially released as OpenPG 1.0
- Inputs/Outputs/Exchanges
 - Everything OpenPDC speaks
 - NEW: Gateway Exchange Protocol (GEP)

The Gateway Security

- Conducted security review of the full code base
- Under review by industry security professionals
- Implemented CIP-informed controls and measures to be CIP v5 ready
 - Logging, Algorithm selection, Key storage, etc.
- Leveraging Microsoft SDL-based approach to software development and testing to ensure security model
 - Design, Attack/Threat models, fuzz testing, unit testing, code reviews, integration testing, functional testing, and security testing
- Standards based communication layer (TLS)
 - Alpha implementation
 - Leverages X.509 Identity Certificates and secure key storage

The Gateway Testing

- Functional Testing
 - Ensures everything works
 - Unit testing covers the code
 - Includes requirements driven by CIP
- Performance Testing
 - Baseline performance
 - Extensive stress testing
- Security Testing
 - Prior code review
 - SDL-based process forward
 - New TLS subsystem option
 - Reviewed with CIP in mind
 - Review underway by Industry Security Professionals

The Gateway Metrics

- Performance (target)
 - 1,000,000 points/second aggregate
 - Multiple streams, connections, and hosts
- Statistics
 - Connections, Points {transmitted, received, dropped, expected, out-of-order}
 - Uptime, errors, security events, alarms
- Logs
 - Security, Informational, Error, etc.
- Reports
- Centralized management and monitoring

Testing Methodology – Functional

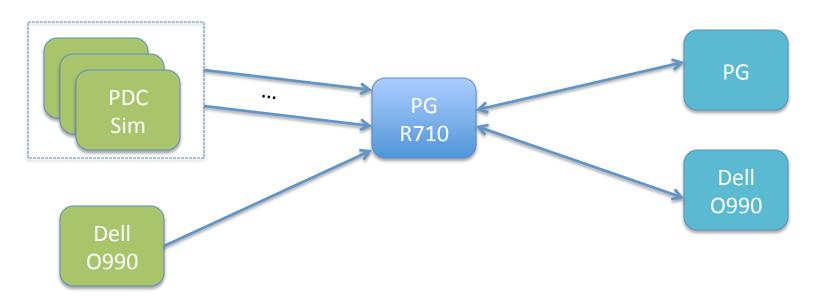
- Intent: To test everything from basic installation through full system functionality
- Composed of approximately 75 aggregated human conducted tests
 - Designed to uncover discrepancies in implementation versus original drafted requirements
- Also includes Unit Testing
 - Currently over 450 complete unit tests covering the time series framework (the core of the system)
- Functional Acceptance Testing at Entergy

Testing Methodology - Performance

- Intent: To test boundary and normal performance conditions of the system
- Testing aims to investigate varying scenarios
 - Scaling up multiple PMU/PDCs reporting to a PG
 - Scaling up multiple PGs connecting to a central PG
 - Varying degrees of pass-thru of PMU measurement points to recipients
- Detailed log analysis and observations are made during performance testing to determine impact of tests and thresholds

Testing Methodology - Security

- Intent: To uncover security issues in the code base and work towards mitigation
- Non-Entergy: Conducted a manual human audit of the code and provided results back confidentially directly to GPA
- Non-Entergy: Leveraged automated tools and human review to do a more in-depth analysis over several months and provided results confidentially to GPA
- Entergy: Security Professionals will continue to leverage Microsoft SDL practices and tools throughout the project

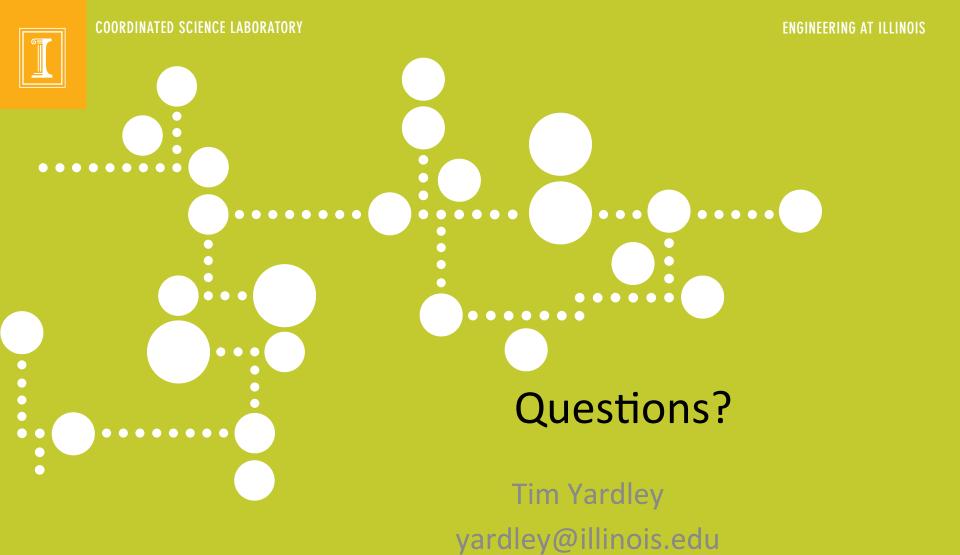

Testing Tools

- Computational Environment
 - Dell R710 2x6c HT (24 proc), 24GB (or more) RAM 1 primary
 - Dell Optiplex 990 4 primary clients
 - Gigabit ethernet for all machines
 - Note, we can and do leverage other resources as needed from our environment
 - Multiple Dell R710's
 - VMWare virtualization
 - External imaging for rapid reinstallation
 - · Automated configuration and testing
- Traffic Generation
 - PDC Traffic Simulation
 - Allows for simulation of PDC aggregated PMU traffic at scale
 - PMU Connection Tester
 - Physical PMUs
 - RTDS GTNET
 - Simulated power-model tied PMUs

Testing Setup

- Gigabit Ethernet
- Support Infrastructure not shown

Results


To be published Spring 2013

Illinois Team

- William H. Sanders (PI)
- Rakesh Bobba
- Erich Heine
- Denis Kholine
- David Rodgers
- Tim Yardley

ITI.ILLINOIS.EDU

