
Working with openXDA

2

Objective

• To provide a deep dive into openXDA’s
components and constructs to
demonstrate openXDA’s adaptability and
ease of addition of new processes.

Overview

4

What is openXDA?

• A back-office automated service to
automatically process and analyze event
and trending data from transmission and
distribution metering – DFRs and PQ
metering

5

openXDA – PQ / DFR Dualism
• PQ – Largely distribution focused
 Single line monitoring
 Self-describing configuration in PQDIF
 Data may be collected by MDM systems
 Event and trending data

• DFR – Largely transmission focused
 Multiple lines monitored
 Meter configuration information (channel

mapping) required
 Only event data, typically as COMTRADE files

6

openXDA Components

• Installer for the openXDA service
• Core service (includes File Watcher,

logging and notification components)
• Administrator’s remote console
• Database (MS SQL Server)
• Configuration management / loader tools

7

openXDA Overview

openXDA Data

8

openXDA Inputs

• Configuration Data
 Meter name and location
 Meter channel definitions
 Line parameters

• Waveform Data
 COMTRADE
 PQDIF
 EMAX (native format)

 SEL .eve (SEL-251, SEL-351, Sel-421 relays)

9

Event Data

• Time Domain
 Event attributes
 Event segments attributes
 Waveform

• Frequency Domain
 Cycle data – Full-set of RMS and synchronous

component values for each full cycle of data on
the waveform

openXDA Data

10

Event Analysis Data

• Sags/Swells
 Duration
 Magnitude

• Faults
 Type
 Inception time
 Duration
 Distance
 Prefault current
 Fault current
 Postfault current

openXDA Data

11

Trending Data

• Daily Values
 Min, Max, Average

• Hourly Values
 Min, Max, Average

• Full Resolution Values
 Min, Max, Average

openXDA Data

12

Trending Alarm Data

• Data Quality – Engineering
reasonableness
 Latched
 Unreasonable (high/low limits)
 Incongruent (max > average > min)

• Off-Normal – Hour-of-week 3 sigma
excursions

• Custom Alarms

openXDA Data

13

openXDA Outputs

• Analytic results saved in data base
• Automated notifications
• COMTRADE
 Line centric
 Includes both input and analytics cycle

data

14

COMTRADE Output is Line Centric

15

Version 1.3 Example Email

16

openXDA Remote Admin Console

• Real-time monitoring of
status log

• Interact with service
through commands

17

openXDA Logging
• Text File-Based Logging
 Status Log (key messages)
 Error Log

• Assembly, class, method
• Stack trace
• Exception type and message

 Debug Log – All status, most error and
copious additional messages

• DB Logging
 For analytics, easily searchable/reportable

record of files processed and errors
encountered

18

What is the open PQ Dashboard?

• The presentation layer PQ data housed in
openXDA.

The openPQ Dashboard has been primarily funded by
EPRI with extensions and contributions provided by others.

19

Selectable
Views

Powerful Date
Controls

Event Count Heat Map
Event Type

Site Location

Event Count and
Type by Date

Event Count and
Type by Site for
Selected Date Link to

Event Detail

Event Data Display

Version 0.7

20

Selectable
Views

Powerful Date
Controls

Fault Count
By Site

Fault Count
By kV CLASS

Fault Summary
By Time for

Date Range

Links to
Fault Detail

Fault Data Display

Version 0.7

21

Fault Distance Calculation
Over the entire fault

Instantaneous,
RMS, Phasor Curves

Select Fault
And Event Time

Zoom / Scroll Axis
Values Displayed at Cursor Location

Select Any Event
From Specified Date

Fault Waveform Detail

22

Fault Detail Report

23

Trending Data Display

Version 0.7

24

• Provides a separate Windows service
platform for analytics based on the openXDA
database.

• Designed with integration in mind. Write
analytics on another platform, such as
Matlab, and integrate the results into
openXDA.

• Distributing analytics to separate Windows
services allows for sandboxing analytics to
prevent potentially unsafe code from
compromising the openXDA platform.

25

PQ Investigator Integration

• PQ Investigator tolerance curves indicate
the failure points of equipment based on
voltage magnitude and duration.

• Automatically determine after an event,
such as a voltage sag, what equipment
might have been affected by the
disturbance.

• View the list of affected equipment in the
PQ Dashboard.

26

PQ Investigator Integration

The Deep Dive

28

openXDA is an Automation Platform

29

Highlight 1

The processes executed by openXDA are
database driven.

30

openXDA Constructs

• ConfigurationLoader
 Load configuration updates from configuration

source
• DataReader
 Read data from files

• DataOperation
 Perform data analysis and load results into

database
• DataWriter
 Provide results and notifications to external

systems

31

openXDA Inputs

• Configuration Data
 Meter name and location
 Meter channel definitions
 Line parameters

• Waveform Data
 COMTRADE
 PQDIF
 EMAX (native format)

 SEL .eve (SEL-251, SEL-351, Sel-421 relays)

32

openXDA Event and Soft Configuration Data

• MS SQL server
required (2012 or later)

• Easy to understand
collection of tables with
procedural interface
layer

openXDA Data

33

ConfigurationLoader

• The ConfigurationLoader interface allows
you to…
 Automatically load configuration from an

external configuration data source on a timer
 Manually load configuration via the remote

system console

34

ConfigurationLoader

IConfigurationLoader interface

35

ConfigurationLoader

Example ConfigurationLoader

36

ConfigurationLoader

37

Highlight 2

A console application can be used to
remotely monitor and control the openXDA
service.

38

Console Commands

39

ConfigurationLoader

Manual configuration load

40

ConfigurationLoader

• By default, openXDA automatically loads
configuration once per day. This behavior
can be modified via the remote system
console. See the following link for details
about the syntax for scheduling.

https://www.gridprotectionalliance.org/NightlyBuilds/GridSolutionsFramework/
Help/html/T_GSF_Scheduling_Schedule.htm

41

ConfigurationLoader

Reschedule automatic configuration load to once
per hour instead of once per day.

42

DataReader

• The DataReader allows you to transform
data from a file into a MeterDataSet that
can be used by openXDA analytics.

43

DataReader

IDataReader interface

44

DataReader

Example COMTRADE file

45

DataReader
CanParse() method (COMTRADEReader)

46

DataReader
Parse() method (COMTRADEReader)

snip...

47

DataReader

48

Highlight 3

Robust file watcher detects new files
dropped by source devices as soon as they
are available.

49

DataReader

• FileExtension
 DataReaders are created and invoked when

the file watcher detects that a file has
appeared on the file system. The type of the
DataReader that is created is determined by
the extension of the file that is detected by the
file watcher.

50

DataOperation

• The DataOperation allows you to…
 Analyze data from a MeterDataSet to produce

meaningful results.
 Load the results of analysis into the database.

51

DataOperation

IDataOperation interface

52

DataOperation

DataOperationBase

53

DataOperation

• Prepare
 Database work that needs to be done in

preparation for the data operation to execute.
An example would be validation of supporting
database tables, such as the EventType table.

 Executed outside of any database
transactions so that locking of database
objects can be kept to a minimum. Excessive
database locking can reduce performance
and increase the risk of deadlocks.

54

DataOperation

EventOperation prepares by loading event types into the
EventType table, ensuring that all the necessary event types

exist before executing the operation.

EventType table

55

DataOperation

• Execute
 This is where data analysis is performed,

transforming the input data into results that
can be loaded into the database.

 No database work is actually done here.
Analysis is performed and results are stored
in memory in preparation for the Load
method.

56

DataOperation

In the EventOperation, Events are loaded into
m_eventTable, an in-memory data table that models

the Event table in the database.

57

DataOperation

• Load
 Loads the results of analysis into the

database.
 This method is executed in a transaction that

may or may not span multiple separate
DataOperations. Keep work here to a
minimum in order to reduce database locking.

58

DataOperation

EventOperation uses a BulkLoader object to load
Event records from m_eventTable into the database.

snip...

59

DataOperation

60

TransactionOrder

• Determines the order in which groups of
DataOperations will be executed.
 DataOperations with the same transaction

order will be executed as a group.
 Each group of DataOperations shares a

transaction with each other (Load method).
 If one DataOperation in the group fails, all

DataOperations fail!

61

LoadOrder

• Determines the order in which
DataOperations in the same group will be
executed.

62

DataWriter

• The DataWriter allows you to send the
results of your analysis to external
systems apart from openXDA.

63

DataWriter

IDataWriter interface

64

DataWriter

COMTRADEWriter

snip...

65

COMTRADE Output

66

DataWriter

67

openXDA Outputs

• DataOperation
 Performs analysis
 Analytic results saved in database

• DataWriter
 Automated notifications (e-mail, …)
 File output consumable by other systems

(COMTRADE, …)
 …

DataOperation vs DataWriter?

68

DataResource

• The DataResource allows you to share
analytic results as well as analysis
routines between DataOperations. Sharing
analysis routines allows separate
DataOperations to use the results of the
analysis regardless of which
DataOperations exist in the system.

69

DataResource
IDataResource interface

DataResourceBase

70

DataResource

• How it works:
 DataOperation calls
meterDataSet.GetResource().

 MeterDataSet creates an instance of the
DataResource and calls
IDataResource.Initialize().

 MeterDataSet stores the DataResource in a
lookup table by type so that subsequent calls
to meterDataSet.GetResource() will not run
the analysis again.

71

Event Data

• Time Domain
 Event attributes
 Event segments attributes
 Waveform

• Frequency Domain
 Cycle data – Full-set of RMS and synchronous

component values for each full cycle of data on
the waveform

openXDA Data

72

DataResource

CycleDataResource transforms the data from the frequency
domain to the time domain. Any DataOperation can use the

transformed data, and the analysis will only be performed once.

73

Trending Data

• Daily Values
 Min, Max, Average

• Hourly Values
 Min, Max, Average

• Full Resolution Values
 Min, Max, Average

openXDA Data

74

DataResource

The HourlySummaryOperation uses the
TrendingDataSummaryResource to group minimum, maximum,

and average values by time so that it can further group them by
hour. The DailySummaryOperation does the same thing, but

groups the trending data by day.

75

Highlight 4

A system settings and logging pattern
makes it easy to create and configure new
openXDA modules.

76

System Settings

• System settings allow you to define
settings in the database to configure your
custom modules. System settings in
openXDA are easy to use and can be
changed at runtime.

77

System Settings

The Setting table contains simple name/value pairs.

78

System Settings

DeviceDefinitionsLoader defines system settings via annotated properties.

79

System Settings

• And that’s it!
• The properties defined by the

DeviceDefinitionsLoader are automatically
populated based on the names of the
properties, the annotations, and the data in
the Setting table. This approach works with
all the following constructs.
 ConfigurationLoader
 DataReader
 DataOperation
 DataWriter
 DataResource

80

System Settings

• Categorized settings
 Settings can be placed into categories for

better organization. This can help to find
settings via database queries, and it can also
help to consolidate settings definitions in the
source code.

81

System Settings

Setting names are prefixed by their categories, separated by a ‘.’

82

System Settings

Create a class that defines the settings category.
Annotate the properties like you would with normal

system settings.

83

System Settings
Modify the configuration loader to annotate a property as a

Category. Instantiate a member variable of the type that defines
your settings category.

84

openXDA Logging

• Logging allows you to provide messages
back to the user for introspection into your
modules’ activities.

• openXDA uses log4net as its framework
for generating log messages. Messages
go straight to the remote system console
as well as the various log files produced
by openXDA.

85

openXDA Remote Admin Console

• Real-time monitoring of
status log

• Interact with service
through commands

86

openXDA Logging

• Text File-Based Logging
 Status Log (key messages)
 Error Log

• Assembly, class, method
• Stack trace
• Exception type and message

 Debug Log – All status, most error and
copious additional messages

87

openXDA Logging

Create an ILog object through which to log your
messages, then call Log.Info() to log a message.

88

openXDA Logging

Remote system console

89

openXDA Logging

The status log logs the messages that are printed
to the remote system console.

90

openXDA Logging

The debug log provides additional information about log
messages as well as more verbose logging.

91

openXDA Logging

• Log levels
 log4net provides a number of log levels that can be

used to log messages. Four levels are typically used
by openXDA.

• Log.Error() – Errors and exception handling
• Log.Warn() – Warning messages
• Log.Info() – Regular status messages
• Log.Debug() – Debug messages

 The remote system console displays different colors
based on the log level.

• Error = Red
• Warning = Yellow
• Status = White
• Debug = Hidden

 Debug messages only appear in the debug log.

92

Questions ??

