UND NORTH DAKOTA CLUSTERING ALGORITHMS FOR STREAMING OPENPDC DATA SETS

ANUPAM MUKHERJEE & RANGANATH VALLAKATI

DEPARTMENT OF ELECTRICAL ENGINEERING

UNIVERSITY OF NORTH DAKOTA

ADVISOR: DR. PRAKASH RANGANATHAN

2015 GPA USER'S FORUM AND TUTORIAL, AUGUST 4 & 5, 2015

This Research acknowledges ND EPSCoR (UND0014140), the Office of RD&C (21418-4010-02294), and the UND Graduate School for the grant support.

OUTLINE OF THE PRESENTATION

- Introduction : Need for Situational Awareness of Smart-grid
- Proposed Situational Awareness Framework
- Development of User Interface for openPDC
- Data Visualization
- Data Clustering
 - DBSCAN Clustering
 - k-means Clustering
 - Multi-Tier k-means Clustering
- Results and Discussions
- Conclusion

NEED FOR SITUATIONAL AWARENESS OF SMART GRID

Blackout Events	Affected Areas	Cause
August 14, 2003 – Northeast Blackout.	Northeastern and Mid-western United States and Canadian province of Ontario. People affected – 55 million.	Software bug in the alarm system.
July 31, 2012 – Blackout in India.	22 states and union territories. People affected – 600 million.	Collapse of Northern and Eastern grids.
December 22, 2013 – Major ice- storm caused power failure.	Ontario to the maritime province in the far east and Michigan People affected – 1.1 million.	lce storm
March 31, 2015 – Black-out, caused by technical failure, affected about 90% of Turkey.	90% of Turkey. People affected – 70 million.	Probable cyber attack.

INTEGRATED SOFTWARE SUITE (ISS)

DEVELOPMENT OF USER INTERFACE

OpenPDC functions by receiving data broadcasted by a PMU and concentrating it, enabling archiving, rebroadcasting, and analysis of the phasor data. It provides around 30 samples per second.

Functionalities:

- E-mail Alarm
- Short Message Service alarm
- Location based monitoring

Figure 2: Data Processing Layer

Methodologies

- C# used for all coding
- Visual Studio 2012 IDE used for development
- External libraries utilized:
 - Grid Solutions Framework
 - Google Static Maps API
 - .NET Framework 4.5

ALERT SYSTEMS DEVELOPED FOR OPENPDC

Subject:An alarm has triggered.

Time: 7/17/2014 3:33:58 PM Name: TESTALARM Threshold: 299300 Operation: Greater than or equal to Sever

> Figure 3: Short Message **Service Alarm**

An alarm has triggered.

Thu 7/17/2014 12:37 AM

To: Gellerman, Nickolas;

Time: 7/17/2014 5:37:04 AM Name: TESTALARM Threshold: 299300 Operation: Greater than or equal to Severity: Information Description: Shelby Bus 1 + Voltage Magnitude

Figure 4: E-mail Alarm

Figure 5: Location Based Monitoring System

DBSCAN CLUSTERING SCHEME

- DBSCAN is a density-based clustering algorithm that divides large regions with sufficiently high density into multiple clusters.
- DBSCAN considers two parameters as input excluding the data. They are ɛ (Eps) and MinPts. Minpts are the minimum number of points that are required to form a core, and eps is the distance threshold from center of the cluster to its circumference of the cluster

Figure 6: DBSCAN Cluster Formation

K-MEANS CLUSTERING SCHEME

- The k-means technique is a well-known and popular algorithm which was first proposed by Lloyd.
- Here, each cluster is represented by an adaptively changing centroid (also called a cluster center), starting from some initial values

Figure 7: k-means Clustering

MULTI-TIER K-MEANS CLUSTERING SCHEME

- This paper presents a different version of k-means which we refer as multi-tier k-means clustering tailored for power system data sets.
- The proposed approach dynamically forms clusters from 1 to 5 clusters depending on the data thresholds and fault type. They are : High Noise, High Border, Good Data, Low Border, and Low Noise points
- Capable of clearly distinguish the good, bad and the noisy data with the threshold inputs from the operator.

DATA CLUSTERING SCHEME

RESULTS AND DISCUSSIONS

- Data Visualization
 - Box Plot
 - Circle Representation
- Data Clustering
 - DBSCAN Clustering
 - k-means Clustering
 - Multi-Tier k-means Clustering

DATA VISUALIZATION

- As phase angle varies between -π to +π (0 to 360 degrees) and the magnitudes are above 0 for the electric signals, unit circle representation is ideal smart-grid data
- The "Box Whiskers" is a statistical tool that allows observing a timeseries data with minimum and maximum values in the series, standard deviations, mean and median values.

Figure 10: Box Whisker Representation of openPDC Voltage Data

UND NORTH DAKOTA

Figure 13: Clustering Schemes Applied on openPDC data under Heavy Load Conditions (a) DBSCAN, (b) k-means, (c) Multi-Tier

UND NORTH DAKOTA

Figure 14: Clustering Schemes Applied on openPDC data under Light Load Conditions (a) DBSCAN, (b) k-means, (c) Multi-Tier

UND NORTH DAKOTA

TEST SCENARIO: SLG FAULT CONDITION (SHORT-CIRCUIT)

Figure 15: Clustering Schemes Applied on openPDC data Under SLG Fault Conditions (a) DBSCAN, (b) k-means, (c) Multi-Tier

NORTH DAKOTA

DISTRIBUTION OF DATA POINTS

Load Condition	Noise Points	Border Points	Core Points (Green)	Load Condition	Cluster 1 (Blue)	Cluster 2 (Cyan)	Cluster 3 (Green)	Load Condition	Low Noise	Low Border	Good Points	High Border	High Noise
	(Red)	(Yellow)		Namal	27.1	20	26.7		(Blue)	(Cyan)	(Green)	(Yellow)	(Red)
Normal	0.5	6.3	93.2	Normai	27.1	50	50.7	Normal	0	10.53	89.47	0	0
Heavy	0.078	8.96	90.5	Heavy	25.3	40.1	34.4	Heavy	24.7	5.2	70.04	0	0
Light	0.8	56.3	42.8	Light	32.7	27.7	39.4	Light	0	3.3	79.76	16.94	0
Fault	7.73	14.4	77.8	Fault	94.6	4.29	1.02	Fault	5.32	10.4	84.2	0	0

Table 1:% distribution of data points with DBSCAN

Table 2: % distribution of data points with k-means

Table 3: % distribution of data points with multitier k-means

- Steady-state condition: Multi-tier k-means performs best.
- Heavy-load condition: DBSCAN performs best.
- Light-load condition: DBSCAN performs best.
- Fault condition: Multi-tier performs the best.

NORTH DAKOTA

CONCLUSION

- An Integrated Software Suite (ISS) has been developed to apply decision-making data-mining algorithms on time-synchronized synchrophasor data.
- A novel, Multi-Tier variation of the k-means algorithm is presented, and its performance metrics are studied against common clustering techniques to classify and detect bad data, event detection, and alarm service applications.
- A comparative analysis has been carried out between the three data clustering algorithms, DBSCAN, k-means and the Multi-Tier k-means.
- It is believed that such a framework will enable the grid's system operators to utilize novel algorithms in order to enhance situational awareness about the grid. The framework is scalable and suitable for streaming time-series data sets.

FUTURE WORK

- Study application of forecasting algorithms like:
 - Time Series Data Analysis
 - Linear Regression
 - Exponential Smoothing
 - Holt's Model
- Topology based State Estimator
- Intrusion Detection and Mitigation Systems

REFERENCES:

- [1] M. Panteli and D. S. Kirschen, "Situation awareness in power systems: Theory, challenges and applications," *Electr. Power Syst. Res.*, vol. 122, pp. 140–151, May 2015.
- [2] A. G. Phadke, "Synchronized phasor measurements in power systems," IEEE Comput. Appl. Power, vol. 6, no. 2, pp. 10–15, Apr. 1993.
- [3] A. J. Phadke, A.G., Thorp, Synchronized Phasor Measurements and Their Applications. 2008.
- [4] J. Chen and A. Abur, "Placement of PMUs to Enable Bad Data Detection in State Estimation," IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1608–1615, Nov. 2006.
- [5] J. Quintero and V. M. Venkatasubramanian, "Oscillation monitoring system based on wide area synchrophasors in power systems," in 2007, iREP Symposium -Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability, 2007, pp. 1–13.
- [6] A. Pal, I. Singh, and B. Bhargava, "Stress assessment in power systems and its visualization using synchrophasor based metrics," in 2014 North American Power Symposium (NAPS), 2014, pp. 1–6.
- [7] A. Pal, J. S. Thorp, T. Khan, and S. S. Young, "Classification Trees for Complex Synchrophasor Data," *Electr. Power Components Syst.*, vol. 41, no. 14, pp. 1381–1396, Oct. 2013.[19]
- [8] Z. Li and W.Wu, "Phasor Measurements-Aided Decision Trees for Power System Security Assessment," in 2009 Second International Conference on Information and Computing Science, 2009, vol. 1, pp. 358–361.
- [9] "IEEE Guide for Phasor Data Concentrator Requirements for Power System Protection, Control, and Monitoring," 2013.
- [10] S. Ma and J. L. Hellerstein, "Ordering categorical data to improve visualization," Infovis-99, no. 1, pp. 1-4, 1999.
- [11] T. J. Overbye, D.A. Wiegmann, and A. M. Rich, "Human factors aspects of power system voltage contour visualizations," *IEEE Trans. Power Syst.*, vol. 18, no. 1, pp. 76–82, Feb. 2003.
- [12] K. R. Žalik, "An efficient k'-means clustering algorithm," Pattern Recognit. Lett., vol. 29, pp. 1385–1391, 2008.
- [13] R. Cordeiro de Amorim and B. Mirkin, "Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering," Pattern Recognit., vol. 45, no. 3, pp. 1061–1075, Mar. 2012.

Questions???

Figure : k-means Cluster formation

VNORTH DAKOTA

C,