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NEED FOR SITUATIONAL AWARENESS OF SMART GRID
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Blackout Events Affected Areas Cause

August 14, 2003 – Northeast 
Blackout. 

Northeastern and Mid-western United 
States and Canadian province of Ontario. 
People affected – 55 million.

Software bug in the 
alarm system.

July 31, 2012 – Blackout in India. 22 states and union territories.  
People affected – 600 million.

Collapse of Northern 
and Eastern      grids.

December 22, 2013 – Major ice-
storm caused power failure. 

Ontario to the maritime province in the 
far east and Michigan People affected –
1.1 million.

Ice storm

March 31, 2015 – Black-out, 
caused by technical failure, 
affected about 90% of Turkey. 

90% of Turkey. People affected – 70 
million.

Probable cyber 
attack.



INTEGRATED SOFTWARE SUITE (ISS)

Figure 1: Integrated Software 
Suite
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DEVELOPMENT OF USER INTERFACE 
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OpenPDC functions by receiving data broadcasted by a PMU and concentrating it, enabling archiving, rebroadcasting, and 
analysis of the phasor data. It provides around 30 samples per second.

Functionalities:
 E-mail Alarm 

 Short Message Service alarm

 Location based monitoring

Figure 2: Data Processing Layer

Methodologies

 C# used for all coding

 Visual Studio 2012 IDE used for development

 External libraries utilized:

 Grid Solutions Framework

 Google Static Maps API

 .NET Framework 4.5



ALERT SYSTEMS DEVELOPED FOR OPENPDC
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Figure 5: Location Based Monitoring SystemFigure 4: E-mail AlarmFigure 3: Short Message 

Service Alarm



DBSCAN CLUSTERING SCHEME

 DBSCAN is a density-based clustering algorithm that divides large regions with sufficiently high density 
into multiple clusters.

 DBSCAN considers two parameters as input excluding the data. They are ߝ	(Eps) and	ݏݐܲ݊݅ܯ. Minpts 
are the minimum number of points that are required to form a core, and eps is the distance threshold 
from center of the cluster to its circumference of the cluster

Figure 6: DBSCAN Cluster Formation 7



K-MEANS CLUSTERING SCHEME

 The k-means technique is a well-known and popular algorithm which was first proposed by Lloyd.

 Here, each cluster is represented by an adaptively changing centroid (also called a cluster center), 
starting from some initial values

Figure 7: k-means Clustering 8



MULTI-TIER K-MEANS CLUSTERING SCHEME

Figure 8: Multi-tier k-means Cluster 
Formation

 This paper presents a different version of k-means which we refer as multi-tier k-means clustering 
tailored for power system data sets. 

 The proposed approach dynamically forms clusters from 1 to 5 clusters depending on the data 
thresholds and fault type. They are : High Noise, High Border, Good Data, Low Border, and Low Noise 
points

 Capable of clearly distinguish the good, bad and the noisy data with the threshold inputs from the 
operator.
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DATA CLUSTERING SCHEME

Figure 9: Smart Grid Data Management 
Framework (SGDMF)

10



RESULTS AND DISCUSSIONS

 Data Visualization
 Box Plot
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 Data Clustering
 DBSCAN Clustering

 k-means Clustering

 Multi-Tier k-means Clustering
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DATA VISUALIZATION
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Figure 11: Circle Representation of  

openPDC Voltage DataFigure 10: Box Whisker Representation 
of  openPDC Voltage Data

 As phase angle varies between -π 
to +π (0 to 360 degrees) and the 
magnitudes are above 0 for the 
electric signals, unit circle 
representation is ideal smart-grid 
data

 The "Box Whiskers" is a statistical 
tool that allows observing a time-
series data with minimum and 
maximum values in the series, 
standard deviations, mean and 
median values. 



TEST SCENARIO: STEADY-STATE CONDITION

(a) (b) (c)

Figure 12: Clustering Schemes Applied on openPDC data under steady state condition 
(a) DBSCAN, (b) k-means, (c) Multi-Tier
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TEST SCENARIO: HEAVY LOAD (HIGH DEMAND) CONDITION

(a) (b) (c)

Figure 13: Clustering Schemes Applied on openPDC data under Heavy Load Conditions 
(a) DBSCAN, (b) k-means, (c) Multi-Tier
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TEST SCENARIO: LIGHT LOAD (LOW DEMAND) CONDITION

(a) (b) (c)

Figure 14: Clustering Schemes Applied on openPDC data under Light Load Conditions 
(a) DBSCAN, (b) k-means, (c) Multi-Tier
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TEST SCENARIO: SLG FAULT CONDITION (SHORT-CIRCUIT)
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(b) (c)(a)

Figure 15: Clustering Schemes Applied on openPDC data Under SLG Fault Conditions
(a) DBSCAN, (b) k-means, (c) Multi-Tier



DISTRIBUTION OF DATA POINTS

 Steady-state condition: Multi-tier k-means performs best.

 Heavy-load condition: DBSCAN performs best.

 Light-load condition: DBSCAN performs best.

 Fault condition: Multi-tier performs the best.
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Table 3: % distribution of data points with multi-
tier k-means

Table 1: % distribution of data points with 
DBSCAN

Table 2: % distribution of data points with 
k-means



CONCLUSION

 An Integrated Software Suite (ISS) has been developed to apply decision-making data-mining 
algorithms on time-synchronized synchrophasor data. 

 A novel, Multi-Tier variation of the k-means algorithm is presented, and its performance metrics are 
studied against common clustering techniques to classify and detect bad data, event detection, and 
alarm service applications. 

 A comparative analysis has been carried out between the three data clustering algorithms, DBSCAN, 
k-means and the Multi-Tier k-means.

 It is believed that such a framework will enable the grid’s system operators to utilize novel algorithms 
in order to enhance situational awareness about the grid. The framework is scalable and suitable for 
streaming time-series data sets.
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FUTURE  WORK

 Study application of forecasting algorithms like:

 Time Series Data Analysis

 Linear Regression

 Exponential Smoothing

 Holt’s Model

 Topology based State Estimator

 Intrusion Detection and Mitigation Systems
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THANK YOU…
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Questions???



K MEANS CLUSTERING
SCHEME
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Figure : k-means Cluster formation
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DBSCAN CLUSTERING 
SCHEME
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Inputs for the Algorithm
X = Dataset
Eps = Min. distance between two points
D = Min. number of points required to 
make core

Distance Metric used: Euclidean
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MULTI-TIER K-MEANS 
CLUSTERING SCHEME
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Inputs for the Algorithm
X = Dataset
V = Expected voltage of 
Transmission  line
S = Allowable range for the line 
voltage to fluctuate

Distance Metric used: Euclidean
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