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NEED FOR SITUATIONAL AWARENESS OF SMART GRID

Blackout Events Affected Areas m

August 14,2003 — Northeast Northeastern and Mid-western United Software bug in the
Blackout. States and Canadian province of Ontario. alarm system.
People affected — 55 million.
July 31,2012 — Blackout in India. 22 states and union territories. Collapse of Northern
People affected — 600 million. and Eastern  grids.
December 22,2013 — Major ice-  Ontario to the maritime province in the lce storm
storm caused power failure. far east and Michigan People affected —
I.1 million.
March 31,2015 — Black-out, 90% of Turkey. People affected — 70 Probable cyber
caused by technical failure, million. attack.

affected about 90% of Turkey.
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INTEGRATED SOFTWARE SUITE (ISS)
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PMUs MDC_ Archive
DEVELOPMENT OF USER INTERFACE :> Gﬂﬂﬂﬂmwmw*t_!‘

OpenPDC functions by receiving data broadcasted by a PMU and concentrating it, enabling archiving, rebroadcasting, and
analysis of the phasor data. It provides around 30 samples per second.

Functionalities: Methodologies

= E-mail Alarm = C#t used for all coding

“ Short Message Service alarm = Visual Studio 2012 IDE used for development
“ Location based monitoring = External libraries utilized:
Data Extraction and Conversion Tool (D = .C5V) *  Grid Solutions Framework

= Google Static Maps API
= .NET Framework 4.5

1
Wisual Studio ‘

Figure 2: Data Processing Layer 5
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ALERT SYSTEMS DEVELOPED FOR OPENPDC

Subject'An alarm has An alarm has triggered. _

; Data to monitor

trlggerEd . dregan, " Se’ected via b . e
OpenPDC ) i s, dropdown bX :. ” l " :

. : ' £ % " Color scale a hue
Time: 7/17/2014 3:33:58 Thu 7712014 1237 A1 e -‘ between red and
PM . "o WS blue, adjustable
NamE' TESTALARM To: Gellerman, Mickolas: 3 i mgﬁl’iﬁ} ., : Y HReE
Threshold: 299300 Lm ?TﬂE?SfELl:RSMSTN AM Hwering over

. . ame: data circle causes
Operation: Greater than or N p—— 5 ¥ &vop-upwith
equal to Operation: Greater than or equal to 2 PMU information
Severity: Information : ' to appear
Sever Description: Shelby Bus 1 + Voltage Magnitude ' ..1;.......:1'». e e e
Figure 3: Short Message Figure 4: E-mail Alarm Figure 5: Location Based Monitoring System

Service Alarm 6
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DBSCAN CLUSTERING SCHEME

= DBSCAN is a density-based clustering algorithm that divides large regions with sufficiently high density

into multiple clusters.

= DBSCAN considers two parameters as input excluding the data.They are € (Eps) and MinPts. Minpts
are the minimum number of points that are required to form a core, and eps is the distance threshold

from center of the cluster to its circumference of the cluster

Noise points

o

L 4
® @

® Core points

Border points

/

Figure 6: DBSCAN Cluster Formation

UNY NORTH D!

7
TY OF

KOTA



K-MEANS CLUSTERING SCHEME

" The k-means technique is a well-known and popular algorithm which was first proposed by Lloyd.

= Here, each cluster is represented by an adaptively changing centroid (also called a cluster center),

starting from some initial values

Cluster
Cluster ® center “C,”
A, A center “Cy” .]‘.
®
AA, A% A A o R°®
A ® e _ 00
A A ® .'. ®
Cluster -A Cluster _BQ .
® 0

Cluster
center “C3”

¢ Qé .
0.0 O’ :.”

¢
Y
Cluster -C

Figure 7: k-means Clustering
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MULTI-TIER K-MEANS CLUSTERING SCHEME

= This paper presents a different version of k-means which we refer as multi-tier k-means clustering
tailored for power system data sets.

= The proposed approach dynamically forms clusters from | to 5 clusters depending on the data
thresholds and fault type.They are : High Noise, High Border, Good Data, Low Border, and Low Noise
points

= Capable of clearly distinguish the good, bad and the noisy data with the threshold inputs from the
operator.

Cluster Cluster Cluster

center “Cyy” center “Cypy cl.ﬂer “C ,;" Cluster Cluster

t \*e . Gcenter ‘CLg” center “Cpy”

“1 11 ¢ COO .I .‘.GG oo -

High Low
Border Border
(Yellow) (Cyan) 9

Figure 8: Multi-tier k-means Cluster
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DATA CLUSTERING SCHEME

D‘. Data Extraction and Conversion
Tool
D B .CV)

Figure 9: Smart Grid Data Management
Framework (SGDMF)
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RESULTS AND DISCUSSIONS

= Data Visualization
= Box Plot
= Circle Representation
= Data Clustering
= DBSCAN Clustering
= k-means Clustering

= Multi-Tier k-means Clustering
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DATAVISUALIZATION

OpenPDC Phasor Data
Voltage -299496.6
Phase -65.092

Time ~January 01, 2015 11:38:54.000
60

= As phase angle varies between -1
to +17 (0 to 360 degrees) and the
magnitudes are above 0 for the
electric signals, unit circle
representation is ideal smart-grid
data

®» The "Box Whiskers" is a statistical
tool that allows observing a time-
series data with minimum and
maximum values in the series,
standard deviations, mean and
median values.

Figure 10: Box Whisker Representation

|
|
|
|
2998 |
2996
|
2994 l
|
|
2992 |
+
299
Volatge PMU1

of openPDC Voltage Data

200000

270

Figure 11: Circle Representation of
openPDC Voltage Data |2
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TEST SCENARIO: STEADY-STATE CONDITION

# Cluster of noise data (2.03%, Max. Mag: 300194, Min. Mag: 299004)
Cluster of border data (13.6%,1 Max. Mag: 300104, Min. Mag: 299222)

3002 .-

2992

299, -7

Phase Angle

®  Cluster of good data (84.3%, Max. Mag: 299952, Min. Mag: 299267)

-200

- 17:54:14
- 17:51:21
5 17:48:28
. 17:45:36
- 17:42:43

17:39:50
17:36:57
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Figure 12: Clustering Schemes Applied on openPDC data under steady state condition

(a) DBSCAN, (b) k-means, (c) Multi-Tier
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Voltage Magnitude

TEST SCENARIO: HEAVY LOAD (HIGH DEMAND) CONDITION

® Cluster of noise data (0.16%, Max. Mag: 300194, Min. Mag: 300095)
Cluster of border data (20.5%, Max. Mag: 300104, Min. Mag: 299000)
®  Cluster of good data (79.2%, Max. Mag: 299870, Min. Mag: 299130)
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Figure |3: Clustering Schemes Applied on openPDC data under Heavy Load Conditions
(a) DBSCAN, (b) k-means, (c) Multi-Tier
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TEST SCENARIO: LIGHT LOAD (LOVW DEMAND) CONDITION

Good data
High value outliers
® High value noise

Low value outliers

# Cluster of noise data (0.8%, Max. Mag: 299254, Min. Mag: 299000) * Clusteri (32.7%, Max. Mag: 301000, Min. Mag: 300457)
Cluster of border data (56.3%, Max. Mag: 301000, Min. Mag: 209222) Cluster2 (27.7%, Max_ Mag: 299945, Min. Mag: 299000)
* _ Cluster of good data (42.8%, Max 3007 Mag: 299641) & Cluster3 (39.4%, Max Mag® 300456, Min. Mag: 299850)
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Figure |14: Clustering Schemes Applied on openPDC data under Light Load Conditions

(a) DBSCAN, (b) k-means, (c) Multi-Tier .
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Voltage Magnitude

Phase Angle Time (HH:MM:S5)

®  Cluster of Noise points (7.73%)
Cluster of Border points [14.4%)

®  Cluster of Good points (77.6%)
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TEST SCENARIO:SLG FAULT CONDITION (SHORT-CIRCUIT)
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Figure |5: Clustering Schemes Applied on openPDC data Under SLG Fault Conditions
(a) DBSCAN, (b) k-means, (c) Multi-Tier

16

UNY NORTH DAKOTA



DISTRIBUTION OF DATA POINTS

Load Noise Border Core Points
Condition Points Points (Green)
(Red) (Yellow)
Normal 0.5 6.3 93.2
Heavy 0.078 8.96 90.5
Light 0.8 56.3 42.8
Fault 71.73 14.4 77.8

Load Cluster 1 Cluster 2 Cluster 3 Load Low Low Good High | High
Condition (Blue) (Cyan) (Green) Condition| Noise | Border | Points | Border | Noise
(Blue) | (Cyan) | (Green) | (Yellow)| (Red)
Normal 27.1 36 36.7 Normal | 0 | 1053 | 89.47 | 0 0
Heavy 25.3 40.1 34.4 Heavy | 24.7 5.2 70.04 0 0
Light 32.7 27.7 39.4 Light 0 3.3 79.76 | 16.94 0
Fault 94.6 4.29 1.02 Fault 5.32 10.4 84.2 0 0

Table I: % distribution of data points with

DBSCAN

Table 2: % distribution of data points with

k-means

= Steady-state condition: Multi-tier k-means performs best.

® Heavy-load condition: DBSCAN performs best.

= Light-load condition: DBSCAN performs best.

= Fault condition: Multi-tier performs the best.

Table 3: % distribution of data points with multi-

LN2NO

tier k-means
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CONCLUSION

= An Integrated Software Suite (ISS) has been developed to apply decision-making data-mining
algorithms on time-synchronized synchrophasor data.

= A novel, Multi-Tier variation of the k-means algorithm is presented, and its performance metrics are
studied against common clustering techniques to classify and detect bad data, event detection, and
alarm service applications.

= A comparative analysis has been carried out between the three data clustering algorithms, DBSCAN,
k-means and the Multi-Tier k-means.

= |t is believed that such a framework will enable the grid’s system operators to utilize novel algorithms
in order to enhance situational awareness about the grid. The framework is scalable and suitable for

streaming time-series data sets.
|18
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FUTURE WORK

= Study application of forecasting algorithms like:
= Time Series Data Analysis
= Linear Regression

= Exponential Smoothing

= Holt’s Model
= Topology based State Estimator

= Intrusion Detection and Mitigation Systems

19
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Figure : k-means Cluster formation

K MEANS CLUSTERING

SCHEME

Distance Metric used: Euclidean

D= \/(x1 —x2)2+(y1 — ¥2)?
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/ﬂv? ° [\ X2 s ey [\ _; DBSCAN CLUSTERING
0 e 0
. At LN : : SCHEME

Distance Metric used: Euclidean

D = \/(x1 — x2)%+(y1 — ¥2)?

B4

B5

Inputs for the Algorithm
X = Dataset
Eps = Min. distance between two points

D = Min. number of points required to
make core
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MULTI-TIER K-MEANS

CLUSTERING SCHEME

Noise
Region
Inputs for the Algorithm
::;’::' X = Dataset
V = Expected voltage of
g°"f’e" Transmission line
egion .
g S = Allowable range for the line
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Distance Metric used: Euclidean
D = \/(x1 —x2)2+(y1 — ¥2)?
Noise
Region
Normal
Region
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