

Power Quality Health Index

Tony Murphy
December 2022

Motivation

 How can we track and implement processes for continuous improvement in PQ?

 How can we best interact with customers to show a concern and understanding of their PQ needs and for resolving PQ issues?

Process

- Develop candidate metrics
- Test metrics using a small sample of industrial customers
 - Are they understandable and meaningful?
 - What are likely outcomes?
 - How difficult are they to produce?

Why have a composite PQ Health Index?

- PQ is a significant cause-and-effect business driver
- Moves corporate power delivery metrics to a tier beyond "reliability"
- Creates an understandable business metric
- Promotes relationship growth with consumers
- Provides organizational motivation to improve the underlying causes of poor PQ
- Supports the creation of secondary metrics to identify and correct emerging issues

What are the attributes of a good composite index?

- Facilitates tracking of an absolute number – not a relative value
- Creates a metric that is tightly aligned with customer PQ "business impact"

PQHI Dimensions

- Harmonics
- Flicker
- Unbalance
- Regulation
- Disturbances

PQHI – Base Measurements

- Harmonics Average of the THDs for each phase
- Flicker Average of the PSTs for each phase
- Unbalance Ratio of Neg Seq to Pos Seq Voltage (S2/S1)
- Regulation Average of the LL voltages for each phase
- Disturbances Sags or swells that result in a measurable loss-ofload

Weekly Pass/Fail Metrics Flow Into Periodic Reporting

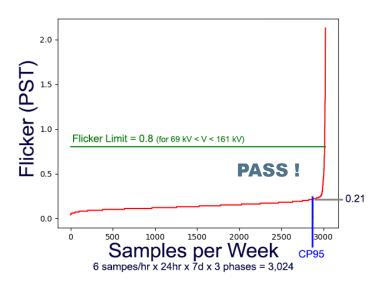
Monthly Reporting

Count of Weekly Pass / Fail Status

Monthly Report
Good = All Pass
Warning = 1 Fail
Alert = > 1 Fail

Annual Reporting

Count of Monthly
Alerts



Annual Report
Good = All Pass
Warning = 1 Monthly Alert
Alert = > 2 Monthly Alerts

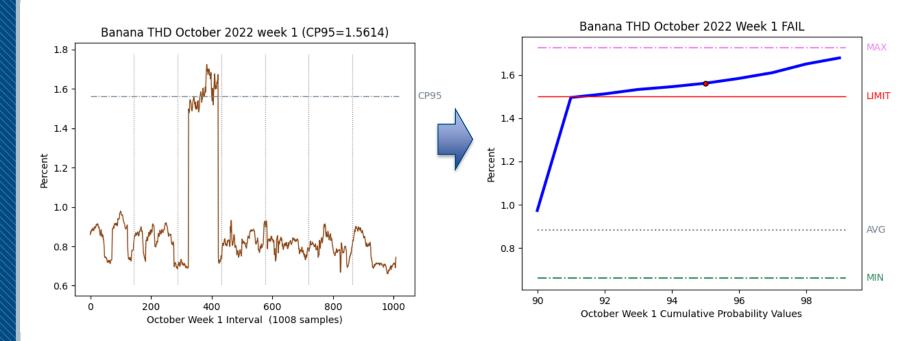
CP95 Is Used to Identify Significant PQ Issues

V = 1 0 W	0.00/	1.0	0.00/	1
	IEEE 519	IEEE 1453	IEC 61000-3-	13
	THD	PST	VUB	

Limits	V ≤ 1.0 KV	8.0%	1.0	2.0%
	1 KV < V ≤ 69 KV	5.0%	0.9	1.8%
	69 KV < V ≤ 161 KV	2.5%	0.8	1.4%
	161 KV < V	1.5%	0.8	0.8%

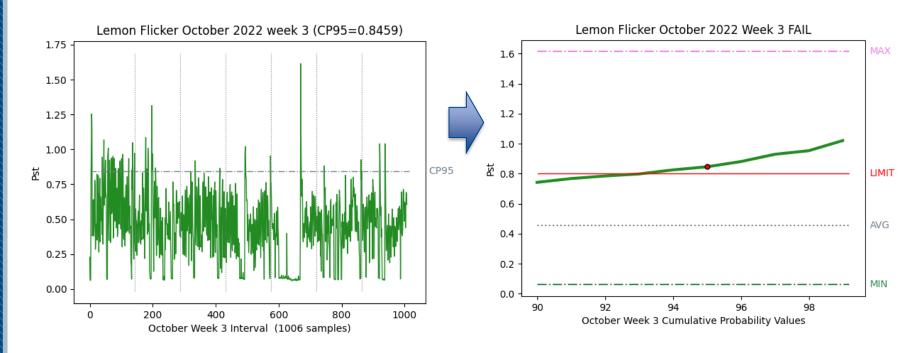
- Cumulative Probability (CP) of 95% statistically separates the normal from the abnormal.
- CP95 value of ten minute intervals over weekly period standard methodology
- CP95 is a pass-fail metric
- There are predictive insights to be gained from study of the top 5%

Test Sample: 29 Customers from 6 Sectors


- Aluminum Rolling Mills [3]
- Chemical Plants [6]
- Inverter Based Resources [4]
- Federal Installations [4]
- Paper Mills [4]
- Steel Mills [8]

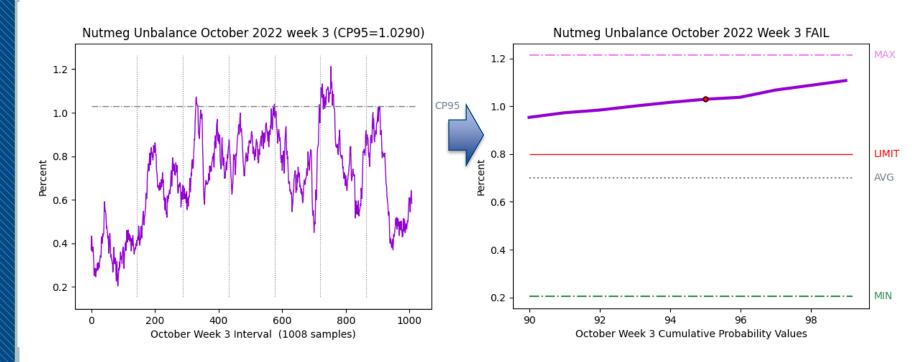
Interval and waveform data for October 2022 used.

Many customers selected where known to have power delivery challenges.


THD Failing Example

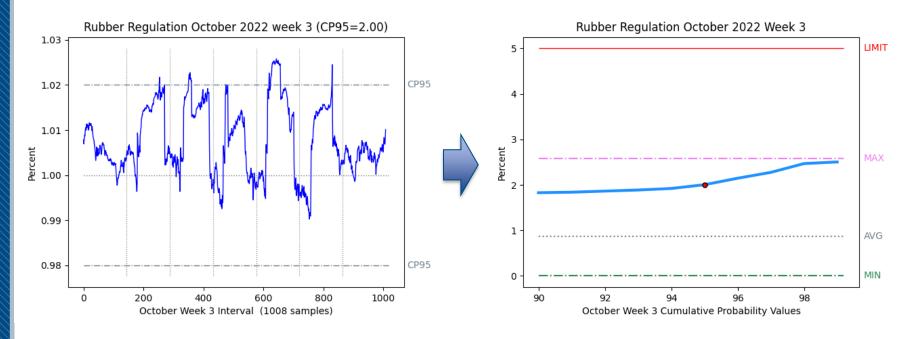
CP95 Limit = $\frac{2.5\% \text{ for } > 69 \text{ kV}}{1.5\% \text{ for } > 161 \text{ kV}}$

There were 37 (32%) failing THD metric weeks in October.

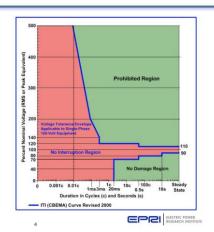


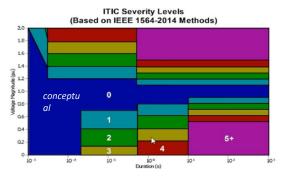
There were 17 (15%) failing flicker metric weeks in October.

Unbalance Failing Example CP95 Limit = 1.4% for > 69 kV 0.8% for > 161 kV

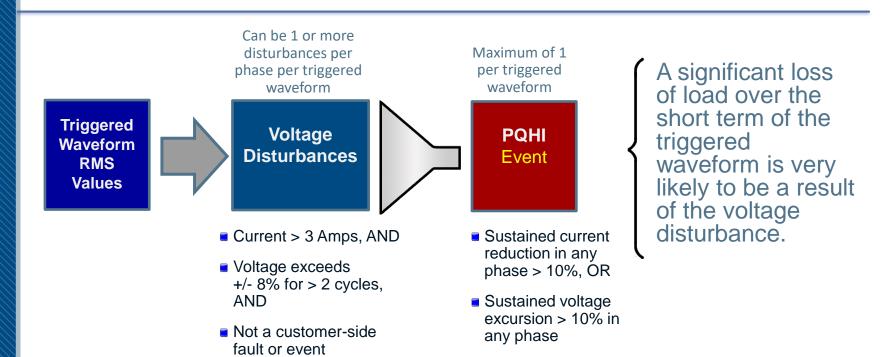


There were 8 (7%) failing unbalance metric weeks in October.


Rubber nominal = 166 kV

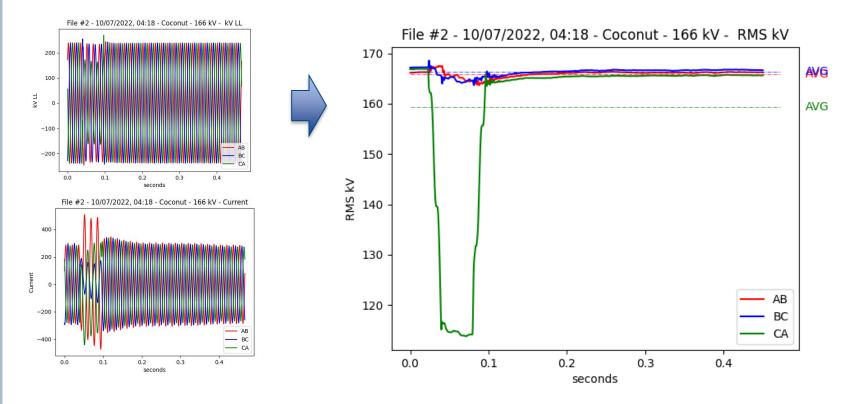


There were no failing regulation metric weeks in October.

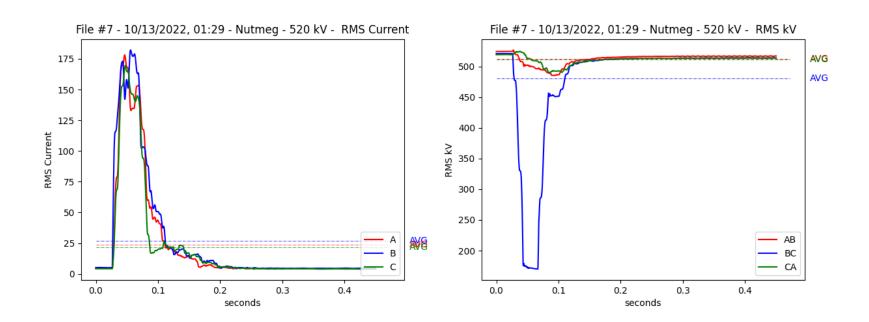

Disturbances – Severity Level Approach

- Severity level approach did not yield meaningful results
- PQ waveform event records are short – often about 0.25 seconds
- Sustained sag and swell events are rare on the transmission system
- A pre-defined "severity level" approach does not adequately measure the adverse impact of low-severity sags to sag-sensitive industry

Disturbance metric based on loss-of-load



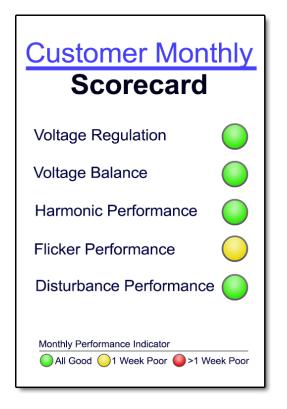
Capturing voltage disturbances provides PQ visibility below the EVENT level.


How small can a voltage disturbance be to have ANY significance?

Disturbance Example

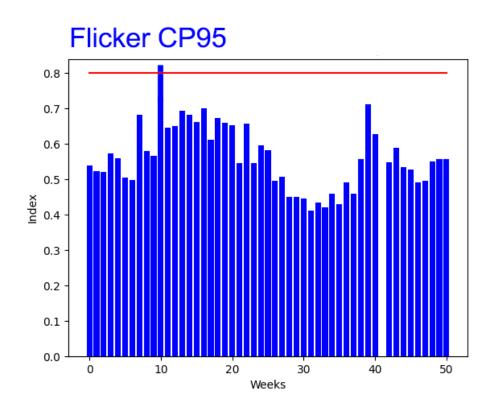
Criterion = Loss of current > 10% Following a sag/swell

No Failing Sags or Swells Found in October


Example of a customer-side non-qualifying event.

PQHI

Customer PQ Health Scorecard


A Monthly PQ Status Report for Large Customers

- Demonstrates a corporate focus on PQ
- Stop-light-based and nontechnical
- "No numbers" to prevent inappropriate comparisons
- Meaningful depth behind each stop-light for detailed customer discussion if needed
- Can be made part of web portal for industrial customers

Annual PQ Health Report for Large Customers

- Automatically produced pdf report to support annual customer discussions – especially where there are PQ concerns
- Reveals gap between the weekly measured value and the limit

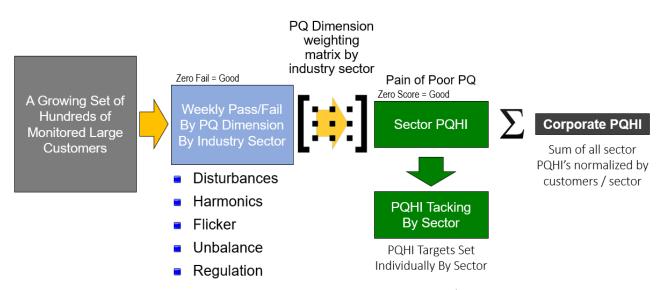
PQHI

Corporate PQ Health Index

A Simple Corporate Monthly PQ Health Index

 Based on a count of the failing weeks across all 5 PQ dimensions.

• Normalized for the number of customers and the weeks in the period.


PQHI
OCTOBER 2022

Short term goal 40
Medium term goal 10
Long term goal 1 = 4 events across all 5 PQ dimensions per 100 customers

54

A More Sophisticated Monthly PQ Health Index

- Based on weekly metrics
- Recognizes that industry sectors are impacted differently by the 5 dimensions of power quality
- Tacking and improvement targets set by sector.

Sector PQHI = f(# customers in sector, weekly failures/customer, sector pain by PQ dimension)

PQHI Score – Normalize Weekly Counts

	#
Aluminum	j 3 j
Chemical	6
DER	4
Federal	4
Paper	4
Steel	8

	THD	Flr	UnBa	L Reg	Dist
Aluminum	0	0	0	0	0
Chemical	6	0	2	0	0
DER	8	0	3	0	0
Federal	2	0	0	0	0
Paper	6	0	0	0	0
Steel	15	17	3	0	0

	THD	Flr	UnBal	Reg	Dist
Aluminum		•		•	•
Chemical	1.00	0.00	0.33	0.00	0.00
DER	2.00	0.00	0.75	0.00	0.00
Federal	0.50	0.00	0.00	0.00	0.00
Paper	1.50	0.00	0.00	0.00	0.00
Steel	1.88	2.12	0.38	0.00	0.00

Failing week count for the month

Sector Count Normalization (divide by customers in sector)

PQHI Score – Apply Impact Weighting

Aluminum	10	1	.0	30	10	40	100 points
DER	0		0	50	0	50	distributed across
Federal	20	2	20	20	20	20	distributed across
Paper	10	1	.0	20	30	30	the PQ Dimensions
Steel	5	1	5	1 40	1 10 I	40	

Sector Weighting Matrix

	THD	Flr	UnBal	Reg	Dist
Aluminum					
Chemical	1.00	0.00	0.33	0.00	0.00
DER	2.00	0.00	0.75	0.00	0.00
Federal	0.50	0.00	0.00	0.00	0.00
Paper	1.50	0.00	0.00	0.00	0.00
Steel	1.88	2.12	0.38	0.00	0.00

	THD	•			
	:	:	:		
Aluminum	0.00	0.00	0.00	0.00	0.00
Chemical	15.00	0.00	6.67	0.00	0.00
DER	0.00	0.00	37.50	0.00	0.00
Federal	10.00	0.00	0.00	0.00	0.00
Paper	15.00	0.00	0.00	0.00	0.00
Steel	9.38	10.62	15.00	0.00	0.00

Sector Normalized Counts

Sector Scores

PQHI Score – Sum Results

	THD	Flr	UnBal	Reg	Dist				
uminum	0.00	0.00	0.00	0.00	0.00		Aluminum	0	
nemical	15.00	0.00	6.67	0.00	0.00		Chemical	21.6	
DER	0.00	0.00	37.50	0.00	0.00	•	DER	37.5	> .
ederal	10.00	0.00	0.00	0.00	0.00		Federal	10.0	
Paper	15.00	0.00	0.00	0.00	0.00		Paper	15.0	
Steel	9.38	10.62	15.00	0.00	0.00		Steel	35.0	

PQHI OCTOBER 2022

119.1

GOOD

Sector Scores

Using uniform weighting the PQHI score is 209.2

Next Steps

- Inform EPRI PS1B 2023 Project Work to Develop an Industry Standard Methodology for a PQHI
- Refine and Incorporate the new Phyton APIs for OpenXDA and TrenDAP into a prototype PQHI scoring engine
- Produce experimental customer and corporate reports, refine the weighting matrix, and produce draft PQHI results

