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Operational Motivation
• ~2,100 Electrical Disturbances (EDs) per month

– Only 2% analyzed by hand!
• “Smart” Devices:

– S&C IntelliRupter® PulseCloser® tech
– APP Engineering Digital Fault Recorder

• Needs:
– Classify events to prioritize those needing attention
– Prediction of events before they occur
– Must know “normal” to detect “abnormal”

• File formats
– IEEE COMTRADE format [2]
– Comma-Separated Values (CSV) format

• Benefits of an automated classification process…
– Saving on labor costs and resource limitations
– Making system improvements
– Identifying and addressing problems that may lead to asset failure
– Improving customer service by making power-quality data available to 

industrial customers
– Opens the door to future automated analyses such as alerting engineers 

before harmonics reach a harmful level
– Prevent potentially harmful attacks, such as directed energy, EMPs, etc.

S&C IntelliRupter [1]
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Technical Motivation

• Prior research focused on:
– Simulated events [3] – [7], [19]

– Electrical Disturbances (ED):
• Faults: LG, LL, LLG, LLL, LLLG [3, 4]
• Power Quality (PQ): Sags and Swells 

[5]
• Power Quality (PQ): Sags, Swells, 

Interruptions [7]
• Power Quality (PQ): Normal, Sags, 

Swells, Interruptions, Harmonics, Sags 
with Harmonics, Swells with 
Harmonics, Flickers, Notches, Spikes, 
Transients [6]

• Machine learning approaches:
• Digital Fuzzy Logic [3]

• Self-Organizing Maps [4]

• Probabilistic Neural Network [6]

• Support Vector Machines (SVM) [7]

DATA DICTATES APPROACH!
One size does NOT fit all!

• Feature Space:
• Higher-Order Statistics such as: [5]
• S-Transform [6]
• Discrete Wavelet Transform (DWT) [7, 19]
• Gabor & Gabor-Wigner Transform, 

Smoothed WVD [19]
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We Shall Achieve

Approach

• Develop a hierarchical, automated process to categorize & identify electrical disturbances
• Leverages expert knowledge

– Understandable
– Adaptable 
– Deployable

• MATLAB code developed to classify events by looking at waveform signature
– Minimal built-in MATLAB functions … Maintains simplicity
– Can be compiled into self-contained, executable files

• Executable file reads event COMTRADE/CSV files containing:
– Time vector
– Three voltages
– Three currents

• Analytics for 
– 140 distribution events (~23 categories)
– 14 generation/transmission events … 7 more completed, but not presented

• Continuous waveform processing … Enables event prediction & prevention

Adhere to the K.I.S.S. principle!
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We Shall Achieve

• Goal: Create a hierarchical process
‒ Think of each COMTRADE file passing through a funnel

• Each file → 𝟑𝟑 sometimes 𝟒𝟒 “checks”:
1. “Valid” data? “Main Pass 1”

• At least one sensor’s data has ≥ 𝟏𝟏𝟏𝟏𝟏𝟏 samples >
sensor floor

2. Switching event? “Main Pass 2”
3. Fault or PQ disturbance? “Main Pass 3”
4. “1 of N” or “X of N”?*

*Sequence of Events (SoE) - Not yet implemented.

Methodology – Distribution
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• Events Categorized & Identified:
– Faults … Single-, double-, or triple-phase

• Symmetrical faults: LLL, LLLG
• Unsymmetrical faults: LG, LL, LLG

– Low-side Fuse Forensics
– PQ Events

• Voltage sag & swell
• Harmonics

– Switching … Seven main types analyzed
• Load shifting … increase/decrease in load
• Return-to-Normal … “normally-closed” or “-open”
• Energizing
• De-energizing
• Source Return … primary or “alternate”
• Loss of source
• Return of source

Methodology – Distribution
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Overall Process Flow

Methodology – Distribution
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Main Pass #1 - Check for “Valid Data”

Methodology – Distribution
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Main Pass #2 - Check for Switching Events

Methodology – Distribution
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Main Pass #2 - Check for Switching Events

Methodology – Distribution
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• Comparison of 
“instantaneous power” in 3rd

and 3rd-to-last (M-3) cycles

𝑷𝑷 𝒊𝒊 = 𝑽𝑽𝑹𝑹𝑹𝑹𝑹𝑹(𝒊𝒊)𝑰𝑰𝑹𝑹𝑹𝑹𝑹𝑹(𝒊𝒊)

• 𝑷𝑷𝑴𝑴−𝟑𝟑 ≥ 𝟏𝟏.𝟐𝟐𝑷𝑷𝟑𝟑 (20% increase)
– Load increase

• 𝑷𝑷𝑴𝑴−𝟑𝟑 ≤ 𝟎𝟎.𝟐𝟐𝑷𝑷𝟑𝟑 (20% decrease)
– Load decrease

𝑷𝑷𝟑𝟑

𝑷𝑷𝑴𝑴−𝟑𝟑

Main Pass #2 – Load Shifting

Methodology – Distribution
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Main Pass #3 - Check for Faults/PQ Events

Methodology – Distribution
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Main Pass #3 - Check for Faults/PQ Events

Methodology – Distribution
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• Seven fuse sizes (S&C Positrol® 
“T” Speed) 
‒ 20T, 30T,  40T, 50T, 65T, 80T, 

and 100T 
‒ 397 total events used across 

all seven classes
• Feature Selection: LTE
• Faulted “portion” of signals 

isolated via Analytic Signal method
• Naïve Bayes Classifier

Main Pass #3 – Fuse Forensics [19]

Methodology – Distribution
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Switching Results

PQ Results Fault Results

Results – Distribution
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• Fuse Forensics
– 20T: 11 events …

 Lower performance

Results – Distribution
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Results – Distribution

Overall Results

• 140 COMTRADE files
– Contains: 

• 2 Invalid data, 
• 4 Unclassified
• 29 PQ events
• 37 Switching
• 68 Faults

– Nearly 93% correct
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Events Categorized & Identified

• Blown Fuse

• Ferroresonance

• Capacitor Switching

• Lightning

• Harmonic Resonance

• Improper Voltage Transformer (VT) 
Secondary Grounding

• Incipient Capacitive Voltage 
Transformer (CVT) Failure

• Current Transformer (CT) Saturation

• Analog-to-Digital (A/D) Converter Clipping

• Induced Transient Noise from Switching

• High-Speed Reclosing with Tapped Motor 
Load

• DC Offset

• Motor Starting

• Variable Frequency Drive (VFD) Motor 
Starting

Generation &Transmission
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CT Saturation
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• Current Transformers (CTs) produce low-
magnitude currents on the secondary side 
proportional to the primary side

• Secondary currents used as inputs to relays and 
meters

• Saturation occurs when the current is so high 
that it cannot handle any more flux

• Can result in inaccurate secondary currents

- Could lead to relay incorrect operation

• Produces a waveform with a characteristic 
“knee”

Methodology – Generation &Transmission
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CT Saturation
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DC Offset

• Steps:
– Current exceeds 15 times continuous 

current of CT
– Check for DC offset

• Average positive and negative 
peaks each half-cycle

– DC offset returns to normal during 
fault

– Inconsistent spacing between zero 
crossings

– High 3rd derivative of current
• Indicates “kneeing” in the curve

– 2nd harmonic current > 15% of 
fundamental

– 3rd harmonic current > 5% of 
fundamental

Methodology – Generation &Transmission
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CT Saturation
Methodology – Generation &Transmission

• Checks:
1. CT primary continuous rating 

exceeded
2. 2nd harmonic current > 15% of 

fundamental
3. DC offset
4. DC offset returns to normal
5. Inconsistent zero crossings
6. High 3rd derivative
7. 3rd harmonic current > 5% of 

fundamental

• High Confidence:
– #1, #2, & 3 of #3 - #7

• Medium Confidence:
– #1 & 3 of #3 - #7

• Low Confidence:
– #2, #7, & 2 of #3 - #6
– #1 & 2 of #3 - #7
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A/D Converter Clipping

• Analog-to-Digital (A/D) converter 
translates analog signals into binary 
code

• Range is restricted by power supply 
rail voltage

• Digitized signal will be “flat-topped” 
if range is rail voltage is exceeded

• Usually occurs in current signals 
during faults

• Can occur in voltage signals as well
• Characterized by repeated samples 

of equal value at maximum or 
minimum

Methodology – Generation &Transmission
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A/D Converter Clipping
± 10 sample

tolerance

15 repeated 
samples

Methodology – Generation &Transmission

• Steps:
– Extract tolerance of 10 

samples on each side of the 
maximum

– Repeated samples occur 
where first derivative is 
equal to zero

– Clipping occurred if number 
of repeated samples exceeds 
a threshold (e.g., 4 samples)
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Induced Transient Noise from Switching
Methodology – Generation &Transmission

• Opening of high-voltage devices like air-break 
switches can produce high-frequency noise

• Noise can become induced onto voltage or 
current signals of measuring equipment

• Identifying these events allows us to determine 
if the following should be checked:

– Signal chokes
– Shielding
– Ground bonding

• Characterized by small random spikes 
throughout voltage or current signal
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Induced Transient Noise from Switching
Methodology – Generation &Transmission

Steps:
• Was the disturbance as compared to nominal 

relatively minor?
• Were there significant spikes in the first derivative 

that would indicate noise was present?
• Did the noise span at least 5 cycles?
• Does the noise occur at least every cycle on 

average?
• Are there at least 20 instances of noise?
• For highest confidence, are there at least 5 single-

sample spikes that occur above the nominal value?
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High-Speed Reclosing with Tapped Motor Load
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Methodology – Generation &Transmission

• High-speed reclosing is common for 
transmission lines

• Lines often serve large motors tapped on the 
line

• During a fault, residual voltage may remain on 
the line due to the motor still spinning

• Results in failed reclose attempt by breaker
• High-speed reclosing should be disabled on 

these lines
• Algorithms should identify where high-speed 

reclosing is enabled
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High-Speed Reclosing with Tapped Motor Load

0 200 400 600 800 1000 1200

Time (ms)

-3

-2

-1

0

1

2

3

Vo
lta

ge
 (k

V)

Voltage Waveform

RMS Voltage

t
1

t
2

t
3

Voltage reaches 
zero

Dead time

Reclosing occurs

Beginning of 
voltage decay

Methodology – Generation &Transmission

Conditions:
• RMS voltage decayed to under 0.5 pu
• RMS voltage decayed gradually in steps less 

than 50% of nominal peak value
• A 50% voltage step of peak value occurred at 

reclosing
• Find the three points 𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐, and 𝒕𝒕𝟑𝟑
High-speed reclosing occurred if:
• Voltage was ~0 kV for shorter than a certain 

threshold time (100 ms)
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DC Offset
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Methodology – Generation &Transmission

• Common issue in analog DFR channels
• Large offsets impact RMS calculations of 

signals
• Need to identify offsets to calibrate devices
• Characterized by asymmetry between 

positive & negative half cycles
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DC Offset
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Methodology – Generation &Transmission

Steps:
• Check for zero frequency magnitude greater than 

50% of fundamental magnitude:

– 𝑯𝑯𝟎𝟎
𝑯𝑯𝟏𝟏

> 𝟎𝟎.𝟓𝟓

• Check for cycles with non-zero mean
• Flag event if cycle mean is greater than 50% of 

nominal peak value
• Look at voltage and current signals
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Motor Starting
Methodology – Generation &Transmission

• Large motor starts can cause sudden current 
increases of 5 to 6 times rated value

• Voltage becomes depressed
• Setting relays to not trip for motor inrush is 

challenging
• Assumption is made that relays are set 

correctly
• This event is for classification purposes only
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Motor Starting

Sudden current 
increase

Voltage sag

Methodology – Generation &Transmission

Conditions:
• Voltage stayed depressed below 95% of 

nominal value for at least 10 cycles
• Current stayed above CT-rated value for at 

least 10 cycles
• Not rich in harmonics (<15%)
• Conditions occur across all three phases
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Variable Frequency Drive Motor Starting
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Methodology – Generation &Transmission

• Some motors have electronic starting like 
variable frequency drives (VFDs)

• Used to bring motor up to speed while 
limiting disturbance to the voltage

• Characteristic harmonics are produced
• Analytics for this event are for classification 

purposes only
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Variable Frequency Drive Motor Starting
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Methodology – Generation &Transmission
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2 pulses/phase = 6-pulse drive Crosses 4 times 
per half cycle

Steps:
• Check that current steadily increases
• Calculate how many times current crosses 

50% of cycle max each half cycle
– # 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 = 𝟑𝟑

𝟐𝟐
× 𝟒𝟒 = 𝟔𝟔

Steps (Cont’d):
• Calculate harmonics of current signals
• Dominant harmonics are either side of integer 

multiples of the number of pulses
• Conditions occur across all three phases
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Blown Fuse
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Methodology – Generation &Transmission

• Blown fuses require personnel to physically 
replace the fuse

• Useful to distinguish from breaker trips
• Fuses clear much faster than breakers (<2 

cycles)
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Blown Fuse
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Methodology – Generation &Transmission

Steps:
• Check that fault longer than >0.25 cycles 

occurred
• Find fault inception and clearing points by 

finding one of the following:
– Sign change in 1st derivative
– Sudden increase in 2nd derivative
– Zero crossings before and after fault

• Fuse fault occurred if clearing time is <1.5 
cycles
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Ferroresonance
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Methodology – Generation &Transmission

• Occurs when circuit containing nonlinear 
inductance is fed from source having series 
capacitance

• Ex. Utilizing breakers with grading capacitors to 
de-energize bus having magnetic voltage 
transformers (VTs)

• Poses serious safety risk
– Overvoltages occur when bus is believed to 

be de-energized
• Voltages exhibit almost square wave
• Current is either zero or sinusoidal
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Ferroresonance
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Gaps between samples

Methodology – Generation &Transmission

Steps:
• Check for voltage difference between 

samples of at least 50% of nominal peak 
value

• Gaps are >1/3 cycle apart and <3 cycles apart
• Time between first and last gap is >5 cycles
• Sufficient harmonic content is present

– One of 2nd to 50th is >5% of fundamental
• Current measured is either zero or nominal 

sinusoid
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Capacitor Switching
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Methodology – Generation &Transmission

• One of the most common events on the 
power system

• Creates PQ events due to temporary voltage 
transients

• Voltage transient contains:
– Quick depression in voltage toward zero
– Voltage overshoot
– Decaying ring wave toward steady state

• Algorithm designed for classification 
purposes only
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Capacitor Switching
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Methodology – Generation &Transmission

To isolate the disturbance in the signal:
• Select first cycle as reference
• Replicate cycle throughout length of waveform to 

create ideal signal
• Subtract ideal signal from actual signal to 

highlight disturbance
• Only continues if length of disturbance is <2 

cycles
• Some disturbance must occur across all three 

phases
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Capacitor Switching

0 5 10 15 20 25 30 35 40 45 50

Time (ms)

-150

-100

-50

0

50

100

150

Vo
lta

ge
 (k

V)

Voltage

Disturbance

t
1

t
2

t
3

Methodology – Generation &Transmission

Find the three characteristic points on one of the 
phases:
• Check for voltage peaks 2% above nominal value
• No more than 2 peaks can be greater than 10% 

above nominal value
• Place half-cycle tolerance around first overvoltage
• 𝒕𝒕𝟏𝟏 occurs where voltage dropped by 2% in one 

sample
• 𝒕𝒕𝟐𝟐 occurs where voltage drops below 90% of 

nominal
• 𝒕𝒕𝟑𝟑 occurs at the overvoltage point
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Lightning

-10 -5 0 5 10 15 20 25 30 35 40

-400

-300

-200

-100

0

100

200

300

400

Methodology – Generation &Transmission

• Contain overvoltage transients with rise time 
in microseconds

• Disturbance is often not fully captured due 
to:

– Limitations of instrument transformers 
to pass high frequencies

– Limitations in sampling rates of 
measurement devices

• Algorithm is for classification purposes only
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Lightning
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Methodology – Generation &Transmission

Steps:
• Ensure that event is not capacitor switching or 

a blown fuse
• Use first cycle as a reference to isolate 

disturbance as done previously
• Ensure that length of disturbance is <1 cycle
• Count number of lightning strikes

– Exclude events with >5 disturbances as 
indicated by the data
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Harmonic Resonance
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Methodology – Generation &Transmission

• Power systems have natural frequencies 
stemming from their inductive and capacitive 
impedances

• Non-linear load could generate frequency equal 
to the natural frequency, creating resonance 
condition

• Equipment is subjected to overvoltages or 
overcurrents

– Could result in equipment failure or mis-
operation by relays

• Important to detect resonance conditions 
quickly
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Harmonic Resonance
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Methodology – Generation &Transmission

Steps:
• Calculate Total Harmonic Distortion (THD) of the 

voltage signal:

– 𝑽𝑽𝐓𝐓𝐓𝐓𝐓𝐓 =
∑𝒊𝒊=𝟐𝟐
𝑴𝑴 𝑯𝑯𝒊𝒊 𝟐𝟐

𝑯𝑯𝟏𝟏
• THD must be >8% of fundamental frequency
• Check for one harmonic (above the 5th) that is >5% of 

fundamental
• Number of 1st derivative sign changes must be >10% 

of the number samples in each cycle 
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Voltage Transformer Secondary Grounding
Voltage sag

Voltage swell

Methodology – Generation &Transmission

• Substations should have single and solid 
grounding on secondary side of voltage 
transformers (VTs)

• If multiple grounds exist, voltage will be 
skewed from nominal in both magnitude and 
phase

• Can lead to mis-operation of protective 
relays
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Voltage Transformer Secondary Grounding

100 150 200 250 300 350 400 450

Time (ms)

40

50

60

70

80

90

100

110

120

130

Ph
as

e 
An

gl
e 

(d
eg

re
es

)

Ph B-C Phase Angle

Phase angle drops 
at fault inception

Methodology – Generation &Transmission

Steps:
• Check for voltage sag in one phase and swell in 

another (above and below 5% of nominal)
• Phase angle between voltages is calculated using 

the definition of dot product:

– 𝜽𝜽 = 𝐜𝐜𝐜𝐜𝐜𝐜−𝟏𝟏 𝑽𝑽𝜶𝜶�𝑽𝑽𝜷𝜷
𝑽𝑽𝜶𝜶 𝑽𝑽𝜷𝜷

• Check that phase angle is >5° different from 120°
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Incipient Capacitive Voltage Transformer Failure
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Methodology – Generation &Transmission

• Capacitive voltage transformers (CVTs) 
supply voltage to protective relays

– Data measured from CVT must be 
accurate

• For catastrophic CVT failures, relays are 
equipped with loss of potential (LOP) logic

• Relays cannot detect CVT showing early 
signs of failure

• Waiting until failure poses a massive safety 
risk

• We must detect failures before they occur
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Incipient Capacitive Voltage Transformer Failure
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Methodology – Generation &Transmission

Steps:
• Check for overvoltage or undervoltage 10% 

above or below nominal peak value
– Must persist for >3 cycles

• Use first cycle as reference check for 
disturbance in signal

• Only occurs on one voltage phase at a time
• Current should be nominal or zero
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Results – Generation &Transmission

• CT Saturation
– 464 of 480 … 96.7% 
– Same ratio for all

• A/D Converter Clipping
– 953 of 960 … 99.3%

• Induced Transient Noise from Switching
– 477 of 480 … 99.4%

• Incipient Capacitive Voltage Transformer Failure
– 154 of 160 … 99.3%

• High-Speed Reclosing with Tapped Motor Load
– 160 of 160 … 100%

• DC Offset
– 956 of 960 … 99.6%

• Motor Starting
– 160 of 160 … 100%

• Variable Frequency Drive Motor Starting
– 160 of 160 … 100%

• Blown Fuse
– 159 of 160 … 99.4%

• Ferroresonance
– 476 of 480 … 99.2%

• Capacitor Switching
– 159 of 160 … 99.4%

• Lightning
– 477 of 480 … 99.4%

• Harmonic Resonance
– 480 of 480 … 100%

• Voltage Transformer Secondary Grounding
– 159 of 160 … 99.4%
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• Continuous Waveform Analysis
– Currently

• Data is not looked at all!
• Overwritten every two weeks

– Our approach … Cyclic histogram [23]
• Ranks probability of data activity
• Alternative representation for PQ analysts
• Facilitate incipient fault detection and 

prediction
• Reduces storage requirement … Factor of 

1,000 

[23]
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Future Endeavors

• Address the sequence of events
• Grow the number of events
• Leverage cyclic histogram for event 

prediction and prevention
• Create & integrate into digital twin
• Transition to utilities
• Expand # of utilities
• Increase the “smarts”



We Shall Achieve

Questions?
Thank You!

Donald R. Reising, Ph.D.
donald-reising@utc.edu

(423) 425-5843
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